
Model-Driven Monitoring: An Application of
Graph Transformation for Design by Contract

Gregor Engels1,2,3, Marc Lohmann1, Stefan Sauer1,3, and Reiko Heckel4

1 University of Paderborn, Department of Computer Science
Warburger Str. 100, 33098 Paderborn, Germany

{engels, mlohmann}@uni-paderborn.de
2 sd&m AG, software design & management

Am Schimmersfeld 7a, 40880 Ratingen, Germany
3 Software Quality Lab, University of Paderborn,
Warburger Str. 100, 33098 Paderborn, Germany

sauer@s-lab.upb.de
4 University of Leicester, Department of Computer Science

University Road, Leicester, United Kingdom
reiko@mcs.le.ac.uk

Abstract. The model-driven development (MDD) approach for con-
structing software systems advocates a stepwise refinement and trans-
formation process starting from high-level models to concrete program
code. In contrast to numerous research efforts that try to generate exe-
cutable function code from models, we propose a novel approach termed
model-driven monitoring. Here, models are used to specify minimal re-
quirements and are transformed into assertions on the code level for
monitoring hand-coded programs during execution.
We show how well-understood results from the graph transformation
community can be deployed to support this model-driven monitoring ap-
proach. In particular, models in the form of visual contracts are defined
by graph transitions with loose semantics, while the automatic trans-
formation from models to JML assertions on the code level is defined
by strict graph transformation rules. Both aspects are supported and
realized by a dedicated Eclipse plug-in.

1 Introduction

Object-oriented technology provided us with a better handle on complexity than
previous technologies. Nevertheless, the growing size of applications and the
demand for shorter time-to-market entail that many issues remain. In recent
years, the paradigm of a model-driven development (MDD) approach has been
introduced and discussed heavily. In particular, the Object Management Group
(OMG) favored a model-driven approach to software development and pushed
its Model-Driven Architecture (MDA) [1] initiative as well as standards such as
the Unified Modeling Language (UML) that provides the foundation for MDA.

However, model-driven development is still in its infancy compared to its am-
bitious goals of having a (semi-)automatic, tool-supported stepwise refinement



2 Engels, Lohmann, Sauer, Heckel

process from vague requirements specifications to a fully-fledged running pro-
gram. A lot of unresolved questions exist for horizontal modeling tasks as well
as for vertical model transformation tasks.

In principle, models provide an abstraction from the detailed problems of
implementation technologies. They allow software designers to focus on the con-
ceptual task of modeling static as well as behavioral aspects of the envisaged
software system. Unfortunately, abstraction naturally conflicts with the desired
automatic code generation from models. To enable the latter, fairly complete and
low-level models are needed. Today, a complete understanding of the appropriate
level of detail and abstraction of models is still missing.

Horizontal modeling levels are interrelated by vertical model transformations.
Here, too, a complete understanding is missing how such a transformation might
be specified and implemented. A number of model transformation approaches
have been proposed and discussed, in particular, as answer to the Query-View-
Transformation (QVT) RFP of the OMG [2].

The graph transformation community has been investigating and discussing
since years graph-based approaches for specifying structure and behavior of soft-
ware components as well as for specifying transformations.Thus, graph transfor-
mation provides well-defined and well-investigated candidate solutions for the
mentioned open issues in the MDD realm.

In our work, we employ results from research on graph transformation to
offer solutions for horizontal modeling as well as vertical model transformation
problems. In particular, we introduce a novel modeling approach. We do not fol-
low the usual approach that models should operate as source for an automatic
code generation step that produces the executable function code of the pro-
gram. Rather, we restrict the modeling task to providing structure information
and minimal requirements towards behavior for the subsequent implementation.
We expect that only structural parts of an implementation are automatically
generated, while the behavior is manually added by a programmer.

As a consequence it can not be guaranteed that the hand-coded implementa-
tion is correct with respect to the modeled requirements. Yet, we will show how
models can be used to generate assertions which monitor the execution of the
hand-coded implementation. Herewith, violations of the modeled requirements
will be detected at runtime and reported to the environment. We call this novel
approach model-driven monitoring.

Model-driven monitoring (MDM) is based on the idea of Design by Contract
(DbC) [3], where so-called contracts are used to specify the desired behavior of
an operation. Contracts consist of pre- and post-conditions. Before an operation
is executed, the pre-condition must hold, and in return, after the execution of
an operation, it has to be guaranteed that the post-condition is satisfied.

The DbC approach has been introduced for textual programming languages
and is supported by appropriate tools, e.g. for the Eiffel language [4]. Recently,
the same approach has been put into effect for the Java programming language.
For instance, the Java Modeling Language (JML) extends Java with Design by
Contract concepts [5]. JML assertions are based on Java expressions and are



Model-Driven Monitoring 3

annotated to the source code. During the execution of such an annotated Java
program, any violation of an assertion is monitored. An exception is raised as
soon as a violation is detected.

We lift this idea of contract specifications to the level of visual models
and reuse the concept of graph transformation to specify pre- as well as post-
conditions of an operation in a graphical, UML-like way. As those visual con-
tracts define minimal requirements towards an operation, the semantic concept
of loose graph transitions, formalized by the double-pullback (DPB) approach
[6], is deployed to provide the semantics of the contract-based approach.

Besides this novel modeling approach, we deploy graph transformation results
for defining the automatic transformation step from visual contract specifications
to textual JML assertions. In contrast to the modeling of minimal requirements
illustrated above, we provide a complete specification of this transformation step
here. Thus, the semantic concept of strict graph transformations is deployed
which is formalized by the double-pushout (DPO) approach [7].

The complete approach of contract-based modeling of a software system is
supported by a tool chain that we implemented as Eclipse plug-in. The presented
method for specifying software components by contracts has been studied in an
industrial setting [8, 9].

We give an overview of the model-driven monitoring approach in the following
section. Section 3 explains our method of modeling with visual contracts based
on the concepts of graph transitions. The translation from visual contracts to
JML assertions is described in Sect. 4. There we use graph transformation rules
for specifying the translation. The tools that we provide to support our method
are introduced in Sect. 5. Finally, we summarize the achievements and sketch
future perspectives.

2 Towards Model-Driven Monitoring

Model-driven monitoring (MDM) constitutes a novel strategy for model-driven
software development beyond the classical idea of model-driven development
(MDD) centered upon the automatic generation of function code and model-
driven testing (MDT) focussing on automatically deriving test cases from mod-
els. We enable model-driven monitoring by embedding visual contracts in a
model-driven software development process according to Fig. 1. Visual contracts
are interpreted as models of behavior from which code for testing and runtime as-
sertion checking can be generated. The visual contracts also specify the behavior
which is then manually implemented by programmers.

On the design level, a software designer has to specify a model of the system
under development. This model consists of class diagrams and visual contracts.
The class diagrams describe the static aspects of the system. Each visual contract
specifies the behavior of an operation. The behavior of the operation is given in
terms of data state changes by pre- and post-conditions, which are modeled by
a pair of UML composite structure diagrams as explained in Sect. 3. Both the
pre- and post-condition of a visual contract are typed over the class diagram.



4 Engels, Lohmann, Sauer, Heckel

Fig. 1. Towards Model-Driven Monitoring

In the next step, we generate Java code from the design model. This gener-
ation process consists of two parts. First, we generate Java class skeletons from
the design class diagrams. Second, we generate JML assertions from every visual
contract and annotate each of the corresponding operations with the generated
JML contract. The JML assertions allow us to check the consistency of models
with manually derived code at runtime. The execution of such checks has to be
transparent in that, unless an assertion is violated, the behavior of the original
program remains unchanged. Thus, our transformation rules (see Sect. 4) for
generating JML assertions from the UML design model only generate assertions
that behave accordingly.

Then, a programmer uses the generated Java fragments to fill in the missing
behavioral code in order to build a complete and functional application. Her pro-
gramming task will emanate from the design model of the system. Particularly,
she will use the visual contracts as reference for implementing the behavior of
operations. She has to code the method bodies, and may add new operations to
existing classes or even completely new classes, but she is not allowed to change
the JML contracts. The latter guarantees that the JML contracts remain con-
sistent with the visual contracts. Integrity of visual contracts can be technically
assisted by separating Java class skeletons and JML assertions into two different
files and prohibiting access to the JML assertions file. Programmers do not need
to see the JML annotations; rather they should use the more intuitive visual
contracts as the starting point for their programming.

When a programmer has implemented the behavioral code, she uses the JML
compiler to build executable binary code. This binary code consists of the pro-
grammer’s behavioral code and additional executable runtime checks which are



Model-Driven Monitoring 5

Fig. 2. Behavior at runtime

generated by the JML compiler from the JML assertions. This leads to a run-
time behavior as shown in Fig. 2. The manual implementation of a programmer
leads to a system state change. The generated runtime checks monitor the pre-
and post-conditions during the execution of the system. They monitor whether
the manually coded behavior of an operation fulfills its JML specification. Thus,
we indirectly monitor whether the system state change performed by the man-
ual implementation complies with the visual contract specification of the design
model since the JML annotations are purely generated from the visual contracts.
Thus, we support model-driven monitoring of implementations by transforming
our visual contracts into contracts in JML.

Our visual contracts are given in a UML-like notation of graph transforma-
tion rules. However, the classical interpretation of graph transformation rules
based on the double-pushout approach (DPO) [7] is not adequate for the repre-
sentation of a contract. In this approach it is assumed that during the execution
of an operation nothing is changed beyond the specification in the rule. This
would mean that we have to describe the behavior of an operation completely
on the model level, which would lead to the drawbacks mentioned in the intro-
duction. Rather, our method builds upon the loose semantic interpretation of
visual contracts. They are interpreted as a minimal description of the data state
transformation which has to be implemented by the programmer. Thus, a visual
contract specifies only what at least has to happen on a system state, but it al-
lows the programmer to implement additional effects. This loose interpretation is
necessary both to give the programmer the opportunity for optimizing her code,
e.g. by adding new classes or methods, and to generate assertions from partial,
incomplete models. Therefore, we have to interpret our visual contracts as graph
transitions. In the double-pullback (DPB) [6] approach graph transitions allow
additional changes that are not encoded in the transformation rules.

3 Modeling with Visual Contracts

We show how to specify a system with visual contracts by the example of an
online shop. We distinguish between a static and a functional view.



6 Engels, Lohmann, Sauer, Heckel

Fig. 3. Class Diagramm specifying static structure of online shop

UML class diagrams are used to represent the static view of a system spec-
ification. Figure 3 shows the class diagram of the sample online shop. We use
the stereotypes control and entity as introduced in the Unified Process [10].
The stereotype key indicates a unique identifier for each of a set of objects of
the same type. Qualifiers on associations (e.g. productNo on the association
controls between Shop and Product) designate an attribute of the referenced
class and provide direct access to a specific object.

The functional view of the system is described by visual contracts (i.e., graph
transformations) for a selected set of operations. It integrates static and dynamic
aspects to describe the effect of an operation on the data state of the system.
Therefore, visual contracts take an operation-wise view on the internal behavior.

On the functional level a designer has different degrees of freedom to decide
how detailed a model is. At first a designer can decide which of the operations
to specify by visual contracts. If an operation is not detailed by a visual contract
then the only consequence is that the operation is not monitored at runtime.

Further, if a designer describes an operation by a visual contract, she has the
freedom to decide how detailed the specification shall be. The less detailed an
operation is specified by a contract, the more freedom has a developer in imple-
menting an operation. This is possible due to the assumption that the contracts
are an incomplete description of the system state changes by an operation. A
contract only specifies what at least has to happen, but it allows a developer
to implement additional effects. For example, the implementation of the visual
contract of Fig. 4 can additionally calculate the total costs of a cart and assign
this value to the attribute subtotal of Cart. This interpretation is supported
by the loose semantics of open graph transformation systems [6].

Structurally, a visual contract consists of two graphs, representing the pre-
condition and the post-condition, respectively, like the left- and a right-hand
side of a graph transformation rule (compare Fig. 4). The graphs are visualized
by UML composite structure diagrams. Each of the diagrams is typed over the
design class diagram.

Additionally, we may extend the pre- or post-condition of a visual contract by
negative pre-conditions (i.e., negative application conditions [11]) or respectively



Model-Driven Monitoring 7

negative
 pre-condition

1
+CartItem

0..*

cartCreate() : Cart
cartAdd(in cid : String, in prNo : String, in quant : Integer) : String

«control»
Shop

cartId

1

*

controls

«key» cartId : String
subtotal : Double

«entity»
Cart

«key» cartItemId : String
productNo : String
quantity : Integer

«entity»
CartItem «key» productNo : String

title : String
price : Double

«entity»
Product

productNo

1

*

controls

+cartItem

0..*

+product

0..1

«control»
this : Shop

«control»
this : Shop

«key» cartId = cid

«entity»
/c : Cart

«key» cartId = cid

«entity»
/c : Cart

«key» cartItemId = cartitemid
productNo = prNo
quantity = quant

«entity»
/citem : CartItem

«key» productNo = prNo

«entity»
/pr : Product

«key» productNo = prNo

«entity»
/pr : Product

productNo = prNo

«entity»
/citemnac : CartItem

«key» cartId = cid

«entity»
/c : Cart

«entity»
/c : Cart

«control»
self : Shop

«control»
self : Shop

cartCreate():c

cartAdd(cid, prNo, quant):cartitemid

productNo : String

«entity»
CartItem

«key» cartId : String

«entity»
Cart «key» productNo : String

«entity»
Product

Fig. 4. Visual contract for operation cartAdd

by negative post-conditions. A slashed ellipse marks them. The negative pre-
condition specifies object structures that are not allowed to be present before the
operation is executed. The negative post-condition identifies object structures
that are not allowed to be present after the execution of the operation.

Beside the different graphs, a visual contract contains the operation name, a
parameter-list and a return-result. The variables of the parameter-list and the
return-result are used in the visual contracts to further qualify the objects.

The visual contract in Fig. 4 specifies the operation cartAdd. This operation
adds a new CartItem, which references an existing Product, to an existing Cart.
The variables of the parameter-list and the return-value are used to determine
values of attributes of different objects. For a successful execution of the opera-
tion, the object this must know two objects: an object of type Cart that has an
attribute cartId with the value cid, and an object of type Product that has an
attribute productNo with the value prNo. The actual argument values are bound
when the client calls the operation. The Cart object is reused in the negative
pre-condition (compare object identifiers). The negative pre-condition extends
the pre-condition by the requirement that the Cart object is not linked to any
object of type CartItem that has an attribute productNo with the value prNo.
This means, it is not permitted that the product is already contained in the cart.
As a result, the operation creates a new object of type CartItem with additional
links to previously identified objects. The return value of the operation is the
content of the attribute cartItemId of the newly created object.

4 Transformation of the Design Model to Java Code with
JML Assertions

After describing the modeling of a software system with visual contracts, we now
present how the model-driven software development process continues from the
design model. A transformation of visual contracts to JML constructs provides
for model-driven monitoring of the contracts. The contracts can be automatically
evaluated for a given state of a system, where the state is given by object con-



8 Engels, Lohmann, Sauer, Heckel

figurations. The generation process as well as the kind of code that is generated
from a class diagram and the structure of a JML assertion that is generated from
a visual contract are described in detail in [12, 13]. Here we describe the trans-
formation more generally and from a methodical perspective and explain the
formalization by graph transformation rules which underlies the transformation.

4.1 Transformation of Class Diagrams to Java

Each UML class is translated to a corresponding Java class. Attributes and
associations are complemented by the corresponding access methods (e.g., get,
set). For multi-valued associations we use classes that implement the Java inter-
face Set. Qualified associations are provided by classes that implement the Java
interface Map. We add methods like getProduct(int productNo) that use the
attributes of the qualified associations as input parameters. Operation signatures
that are specified in the class diagram are translated to method declarations in
the corresponding Java class.

4.2 Transformation of Visual Contracts to JML

For operations that are specified by a visual contract, the transformation of
the contract to JML yields a Java method declaration that is annotated with
a JML assertion. The pre- and post-conditions of the generated JML assertions
are interpretations of the graphical pre- and post-conditions of the visual con-
tract. When any of the JML pre- and post-conditions is evaluated, an optimized
breadth-first search (compare [14]) is applied to find an occurrence of the pat-
tern that is specified by the pre- or post-condition in the current system data
state. The search starts from the object this which is executing the specified
behavior. If the JML pre-condition or post-condition finds a correct pattern, it
returns true, otherwise it returns false.

4.3 Specifying the Contract Transformation

After demonstrating the transformation in principle, we explain in the follow-
ing how we have defined a precise specification of the transformation from visual
contracts to JML. The declarative specification in [12] abstracts from representa-
tion details of the visual contracts and leaves out different details of the mapping
between visual contracts and JML. In contrast, we present an operational speci-
fication of the transformation from visual contracts to JML here. The provision
of the operational model transformation is the prerequisite for an automated
translation of visual contracts to JML as implemented in our development tools.

The operational specification is the second application of graph transforma-
tion concepts in our method towards model-driven monitoring. Other than the
first application for specifying visual contracts that state minimal requirements
on a single horizontal modeling level, we need a complete specification of the
transformation behavior to support the automation of the model transformation



Model-Driven Monitoring 9

in the vertical direction. The operational specification is based upon an exten-
sion of the UML 2 metamodel for visual contracts. The metamodel represents
the source language of the model transformation and provides the type graph
on which the graph transformation rules operate, i.e., the graph transformation
rules are specified on the metamodel level, and the concrete models are viewed
as metamodel instances when they are transformed.

4.4 Extended UML 2 Metamodel

Our visual contracts integrate with the UML 2 metamodel. Mainly we use el-
ements from the UML 2 metamodel packages InternalStructures and Collab-
orations. The InternalStructure subpackage provides mechanisms for specify-
ing structures of interconnected elements, representing runtime instances, which
collaborate over communication links to achieve some common objectives. A
collaboration represents how elements of the model cooperate to perform some
essential behavior. Among others, the participating elements may include classes
and objects, associations and links as well as attributes and operations. Collab-
orations allow us to describe only the relevant aspects of the cooperation of a
set of instances by identifying the specific roles that the instances will play.

Figure 5 provides a view on the metamodel for our visual contracts. Visual-
Contract specializes Collaboration. A collaboration defines a set of cooperating
entities to be played by instances (its roles) as well as a set of connectors that
define communication paths between the participating instances. The roles are
represented by ConnectableElements, which are referenced by a Collaboration.
ConnectableElement is a TypedElement, which references a Type. Class is a Clas-
sifier, which is a Type. Consequently, the ConnectableElement can define a role
that classes have to play in order to accomplish the behavior of a collaboration
(visual contract, respectively). ConnectableElements are linked by a Connector
with ConnectorEnds. A Connector specifies a link that enables communication
between two or more instances. This link may be an instance of an association.
In contrast to associations, which specify links between any instance of the as-
sociated classifiers, connectors specify links between instances playing the roles
of the connected parts only. Additionally, the UML 2 metamodel offers special-
izations of ConnectableElement for representing parameters and variables.

We also define attribute values that an instance must provide in order to play
one of the defined roles. According to the UML metamodel, you cannot specify
the content of the features (properties) of a role in more detail. Therefore, we
have introduced a specialization of a ConnectableElement named VCElement
and a class Constraint to restrict possible attribute values. The class Constraint
groups a feature (which represents an attribute of a class) and a permitted value.
The permitted value of a feature can be a simple value (ValueSpecification) or
another VCElement. Since the value of a feature can change from the pre- to
the post-condition, we distinguish in the meta-model by association whether the
reference value belongs to the pre- or post-condition.

We have to define whether a VCElement is part of the pre- or post-condition.
To specify the absence of certain structures, both pre- and post-conditions may



10 Engels, Lohmann, Sauer, Heckel

VisualContract

Postcondition

+owningContract

1

+postCondition1

Precondition

+owningContract

1

+preCondition1

NegativeCondition

+owningPost

0..1

+npc0..*

+owningPre

0..1

+nac

0..*

0..1

+collaborationRole

0..*

0..1

+collaborationRole

0..*

0..*

+collaborationRole0..*

Collaborations::Collaboration

InternalStructures::Connector

0..1

0..*

0..1

0..*

0..1 0..*

VCElement

InternalStructures::ConnectableElement

+c
ol

la
bo

ra
tio

nR
ol

e

*

*

InternalStructures::ConnectorEnd

1

+end2..*

*

+role0..1

Kernel::TypedElement

-isAbstract : Boolean = false
Kernel::Classifier

Kernel::Type

+type

0..1

Kernel::Class

Constraint
+owningConstraint

0..*

+preElement 0..*

+owningConstraint 0..*

+postElement 0..*
+owningConnectableElement

1

+constraint

0..*

Kernel::ValueSpecification

+owningConstraint0..1

+postValue

0..*

+owningConstraint

0..1

+preValue0..*

Parameter

-isReadOnly : Boolean = false
Kernel::StructuralFeature

*

+definingFeature

0..1

Kernel::Property +class0..1

+ownedAttribute

*

StructuredActivities::Variable

Collaborations::Parameter

Fig. 5. Extract of the UML 2 metamodel extension for visual contracts



Model-Driven Monitoring 11

rS : LS ::= RS rT : LT ::= RT

#Pre(<op>)# ::=
@ requires
@ this.get#PreConstraint(<co>)#;
#Pre(<op>)#

Fig. 6. Compound rule that starts the generation of JML assertions for checking at-
tribute values of object this

contain negative conditions. Therefore, we have added three metamodel classes
to the UML metamodel: Precondition, Postcondition, and NegativeCondition.

4.5 Operational Transformation with Compound Rules

For the operational specification of our transformation from visual contracts
to JML, we assume that the source model is syntactically correct according to
our metamodel. We define the transformation by a set of compound rules as
introduced in [15].

The basic idea of compound rules is that a model transformation from a
source language to a target language can be defined by a synchronized model
transformation on the source and the target language. Such a synchronized model
transformation can be specified by a set of model transformation rules, consisting
of two parts for transforming both the source and target model.

Figure 6 depicts a sample compound rule that starts the generation of the
JML assertions for checking the attribute values of the object this in the pre-
condition. A compound rule r : (rs, rt) consists of two parts, a UML part and a
JML part. Both rs and rt can be viewed as graph transformation rules. In gen-
eral, the source transformation rule rs : LS ::= RS describes the transformation
of the source model, the target transformation rule rt : LT ::= RT specifies the
transformation of the target model. Note that in Fig. 6 rs is an identical transfor-
mation with LS = RS , which is visualized by the left-hand side only. Source and



12 Engels, Lohmann, Sauer, Heckel

target rules are coupled by the ability of using shared variables. Such variables
are denoted by #variable#.

When applying a compound rule for the transformation of a source to a target
model, at first an occurrence of the left-hand side Ls of the source transformation
rule is searched within the source model (source match). In Fig. 6 the left-hand
side of the source rule matches, if a VCElement (part of a visual contract added to
an operation) this has a constraint with a value specification. If a source match
is found, the variables are instantiated. This means, that a value is assigned to
each variable according to the source match. Then, an occurrence of the left-hand
side of the target transformation rule LT (using the instantiated variables—in
our example there is only one variable op) is searched within the target model
(target match). Then the target match is replaced by the right-hand side RT of
the target transformation rule. In our example, the target transformation rule
prepares the code for testing the content of an attribute of the object this.

In order to specify model transformations with control, the approach in [15]
provides support for assembling compound rules into transformation units. Such
units consist of a set of compound rules with control. Each compound rule is
contained in a rule set. The rule sets are then organized in a sequence of rule
sets where each rule set can be considered as a layer. Within a rule set, rules
may be applied non-deterministically. A transformation unit consists of a set of
compound rules together with a control expression specifying the organization
of rules into rule sets, layers and determining whether a rule should be applied
once or as long as possible.

For defining the transformation of our models consisting of class diagrams
and visual contracts to Java classes and JML we need round about 95 com-
pound rules. These compound rules have to be organized in approximately 25
transformation units.

5 Tool Support

In the previous sections, we have shown how to use visual contracts in models of
software systems for specifying operations and how to translate visual contracts
to JML. This enables model-driven monitoring. We can monitor the correctness
of a manual implementation with respect to its specification.

Existing CASE tools or graph transformation tools do not support the use
of visual contracts for specifying software systems as described in our approach.
As a proof of concept and for showing the practical feasibilty of our approach,
we have developed an integrated development environment for using visual con-
tracts in a software development process. This development environment allows
software developers to model class diagrams and specify the behavior of op-
erations by visual contracts. It further supports automatic code generation as
described in Sect. 4, the manual implementation to get a complete application,
and the compilation of the generated assertions by a JML compiler.

Figure 7 shows the user interface of our tool for modeling visual contracts.
The central workspace of the visual contract editor is divided into four sectors.



Model-Driven Monitoring 13

Fig. 7. Tool support for modelling visual contracts



14 Engels, Lohmann, Sauer, Heckel

A software designer can specify the pre- and post-condition in the bottom-left
sector (labeled with LHS ) and the bottom-right sector (labeled with RHS ), re-
spectively. An object this (the active object executing the operation) is added
automatically in both sectors when a new visual contract for an operation is
created. Every object added to the pre- or post-condition must be within reach
of the object this by links. Additionally, the top sector allows for specifying neg-
ative conditions. The top-left sector (labeled with NAC for negative application
condition) is for specifying object structures that are not allowed to be present
before the operation is executed. The top-right sector (labeled with NPC for
negative post-condition) is for specifying object structures that are not allowed
to be present after the execution of the operation.

The development environment is implemented as an Eclipse plug-in. We
mainly used the Graphical Editor Framework (GEF) [16] and the Eclipse Mod-
eling Framework (EMF) [17] for the implementation of the plug-in. The code
generation was implemented using Eclipse JET [18], which is a part of the EMF.

6 Conclusion

We have shown in this paper, how we have been employing results from research
on graph transformation in model-driven software development processes. Ad-
dressing horizontal modeling issues, we have lifted the Design by Contract idea
to the visual model level. Visual contracts use graph transformation concepts for
the specification of pre- and post-conditions of operations. Since they only define
minimal requirements towards the implementation of an operation, we use the
loose semantics of graph transitions of the double-pullback approach.

For the vertical direction of model transformations, we use compound (graph
transformation) rules to define a transformation of our visual contracts to the
Java Modeling Language JML, a Design by Contract extension for Java. To
automate this model transformation, we need the strict semantic interpretation
of graph transformation rules as formalized by the double-pushout approach.

Altogether, we have introduced model-driven monitoring as a new and prac-
tically useful amalgamation of graph transformation and Design by Contract
concepts. In contrast to the automatic generation of function code, we generate
assertions from contracts that are monitored and automatically checked while
the actual and manually implemented function code is executed.

To support our model-driven monitoring method, we provide an editor that
allows developers to coherently model class diagrams and visual contracts. The
editor is complemented by code generation facilities for Java classes with JML
assertions for their operations.

In an industrial case study [9, 8], we have successfully applied visual contracts
for specifying the interfaces of Web services. Our method and tools are currently
considered by an industrial partner software company of the Software Quality
Lab (s-lab) for deployment in their software development projects.



Model-Driven Monitoring 15

References

1. Meservy, T., Fenstermacher, K.D.: Transforming software development: An MDA
road map. Computer 38(9) (2005) 52–58

2. OMG (Object Management Group): Request for proposal: Mof 2.0 query / views
/ transformations rfp (2002)

3. Meyer, B.: Applying “Design by Contract”. IEEE Computer 25(10) (1992) 40–51
4. Meyer, B.: Eiffel: The Language. second printing edn. Prentice-Hall (1992)
5. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: A behavioral in-

terface specification language for Java. Technical Report 98-06-rev27, Department
of Computer Science, Iowa State University (2005)

6. Heckel, R., Ehrig, H., Wolter, U., Corradini, A.: Double-pullback transitions and
coalgebraic loose semantics for graph transformation systems. APCS (Applied
Categorical Structures) 9(1) (2001) 83–110

7. Ehrig, H., Pfender, M., Schneider, H.: Graph grammars: an algebraic approach. In:
14th Annual IEEE Symposium on Switching and Automata Theory, IEEE (1973)
167–180

8. Engels, G., Güldali, B., Juwig, O., Lohmann, M., Richter, J.P.: Industrielle Fall-
studie: Einsatz visueller Kontrakte in serviceorientierten Architekturen. In Biel,
B., Book, M., Gruhn, V., eds.: Software Enginneering 2006, Fachtagung des GI
Fachbereichs Softwaretechnik. Volume 79 of Lecture Notes in Informatics., Köllen
Druck+Verlag GmbH (2006) 111–122

9. Lohmann, M., Richter, J.P., Engels, G., Güldali, B., Juwig, O., Sauer, S.: Ab-
schlussbericht: Semantische Beschreibung von Enterprise Services - Eine indus-
trielle Fallstudie. Technical Report 1, Software Quality Lab , Unversity of Pader-
born (2006)

10. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development
Process. Addison-Wesley Professional (1999)

11. Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application
conditions. Fundamenta Informaticae 26(3,4) (1996) 287–313

12. Lohmann, M., Sauer, S., Engels, G.: Executable visual contracts. In Erwig, M.,
Schürr, A., eds.: 2005 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC’05). (2005) 63–70

13. Heckel, R., Lohmann, M.: Model-driven development of reactive informations sys-
tems: From graph transformation rules to JML contracts. International Journal on
Software Tools for Technology Transfer (STTT) (2006) accepted for publication.

14. Zündorf, A.: Graph pattern matching in progres. In Cuny, J., Ehrig, H., Engels, G.,
Rozenberg, G., eds.: 5th. Int. Workshop on Graph-Grammars and their Application
to Computer Science. LNCS 1073 (1996)

15. Heckel, R., Küster, J.M., Taentzer, G.: Towards automatic translation of UML
models into semantic domains. In Kreowski, H.J., Knirsch, P., eds.: Proceedings
of the Appligraph Workshop on Applied Graph Transformation. (2002)

16. Eclipse Consortium: Eclipse graphical editing framework (GEF) - version 3.1.1.
http://www.eclipse.org/gef/ (2006)

17. Eclipse Consortium: Eclipse modeling framework (EMF) - version 2.1.2.
http://www.eclipse.org/emf/ (2006)

18. Eclipse Consortium: Java emitter templates (JET). Eclipse Modeling Framework
(EMF) - Version 2.1.1, http://www.eclipse.org/emf/ (2006)


