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Abstract. The Model-Driven Architecture (MDA) approach for con-
structing software systems advocates a stepwise refinement and trans-
formation process starting from high-level models to concrete program
code. In contrast to numerous research efforts that try to generate exe-
cutable function code from models, we propose a novel approach termed
model-driven monitoring. On the model level the behavior of an opera-
tion is specified with a pair of UML composite structure diagrams (visual
contract), a visual notation for pre- and post-conditions. The specified
behavior is implemented by a programmer manually. An automatic trans-
lation from our visual contracts to JML assertions allows for monitoring
the hand-coded programs during their execution.

In this paper1 we present how we extend our approach to allow for model-
driven unit testing, where we utilize the generated JML assertions as test
oracles. Further, we present an idea how to generate sufficient test cases
from our visual contracts with the help of model-checking techniques.
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1 Introduction

Everyone who develops or uses software systems knows about the importance of
software qualities, e.g. correctness and robustness. However, the growing size of
applications and the demand for shorter time-to-market hampers the develop-
ment of high-quality software systems. To get a better handle on the complex-
ity, the paradigm of model-driven development (MDD) has been introduced. In
particular, the Object Management Group (OMG) pushed its Model-Driven Ar-
chitecture (MDA) [1] initiative based on the Unified Modeling Language (UML)
that provides the foundation for MDA. However, the MDA is still in its infancy
compared to its ambitious goals of having a (semi-)automatic, tool-supported

1 This paper is an abbreviated version of our same-titled contribution to MoDeV2a
2006. For related work, refer to the longer version in the MoDeV2a 2006 workshop
proceedings or to our web page at http://www.upb.de/cs/ag-engels.
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stepwise refinement process from vague requirements specifications to a fully-
fledged running program. A lot of unresolved questions exist for modeling tasks
as well as for automated model transformations.

Nevertheless, in today’s software development processes models are an es-
tablished part for describing the specification of software systems. In principle,
models provide an abstraction from the detailed problems of implementation
technologies. They allow software designers to focus on the conceptual task of
modeling static as well as behavioral aspects of the envisaged software system.
Unfortunately, abstraction naturally conflicts with the desired automatic code
generation from models. To enable the latter, fairly complete and low-level mod-
els are needed. Today, a complete understanding of the appropriate level of detail
and abstraction of models is still missing. Thus, in today’s software development
processes developers are normally building an application manually with respect
to its abstract specification with models.

In our work, we introduced a new modeling approach. We do not follow the
usual approach that models should operate as source for an automatic code gen-
eration step that produces the executable function code of the program. Rather,
we restrict the modeling task to providing structural information and minimal
requirements towards behavior for the subsequent implementation. We expect
that only structural parts of an implementation are automatically generated,
while the behavior is manually added by a programmer. As a consequence it can
not be guaranteed that the hand-coded implementation is correct with respect
to the modeled requirements. Therefore, we have shown in previous publications
[2–4] how models can be used to generate assertions which monitor the execution
of the hand-coded implementation. Herewith, violations of the modeled require-
ments will be detected at runtime and reported to the environment. We call this
novel approach model-driven monitoring. It is based on the idea of Design by
Contract (DbC) [5], where so-called contracts are used to specify the desired
behavior of an operation. Contracts consist of pre- and post-conditions. Before
an operation is executed, the pre-condition must hold, and in return, after the
execution of an operation, the post-condition must be satisfied. The DbC ap-
proach has been introduced at the level of programming languages. For instance,
the Java Modeling Language (JML) extends Java with DbC concepts [6] which
are annotated to the source code. During the execution of such an annotated
Java program, the assertions are monitored. An exception is raised as soon as
a violation of the assertions is detected. With the concepts of visual contracts
[2] we have lifted the idea of contracts to the level of models. A visual contract
allows for specifying a contract by pairs of UML composite structure diagrams
for the pre- and post-conditions. A transformation of our visual contracts into
JML allows for monitoring a system that is implemented manually.

Now we want to extend our approach to allow for model-driven unit testing.
The visual contracts respectively the generated JML assertions are viewed as test
oracles to decide whether the results calculated by a hand-coded implementation
are correct. Additionally, we want to generate test cases from our models with
the help of model-checking techniques.
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2 Overview of the Approach

Test-driven development [7] is an important part of agile processes. E.g. Ex-
treme Programming (XP) [8] emphasizes the test-first approach. When han-
dling a programming task, programmers always begin writing unit tests. This
tests formalizes the requirements. If all tests run successfully then the coding
is complete. To accent the agile part of our model-driven monitoring approach
we want to support the test-driven development by enabling model-driven unit
testing. Therefore, beside the generation of runtime assertions we want to auto-
matically generate test cases from our models. Figure 1 shows our development
process enabling model-driven monitoring and model-driven unit testing.

On the design level, a software designer has to specify a model of the system
under development. This model consists of class diagrams and visual contracts.
The class diagrams describe the static aspects of the system. Each visual contract
specifies the behavior of an operation. The behavior of the operation is given in
terms of data state changes by pre- and post-conditions, which are modeled by
a pair of UML composite structure diagrams as explained in Sect. 3.

In the next step, we generate code fragments from the design model. This
generation process consists of two parts. First, we generate Java class skeletons
from the design class diagrams. Second, we generate JML assertions from every
visual contract and annotate each of the corresponding operations with the gen-
erated JML contract. The JML assertions allow us to check the consistency of
models with manually derived code at runtime. The execution of such checks is
transparent in that, unless an assertion is violated, the behavior of the original
program remains unchanged.

Then, a programmer uses the generated Java fragments to fill in the missing
behavioral code in order to build a complete and functional application. His pro-
gramming task will emanate from the design model of the system. Particularly,
he will use the visual contracts as reference for implementing the behavior of
operations. He has to code the method bodies, and may add new operations to
existing classes or even completely new classes, but he is not allowed to change
the JML contracts. If new requirements for the system demand new function-
ality then the functionality has to be specified with visual contracts before the
programmer can start programming. Using our visual contracts this way in a
software development process resembles agile development approaches.

When a programmer has implemented the behavioral code, he uses the JML
compiler to build executable binary code. This binary code consists of the pro-
grammer’s behavioral code and additional executable runtime checks which are
generated by the JML compiler from the JML assertions. The manual implemen-
tation of a programmer leads to system state changes. The generated runtime
checks monitor the pre- and post-conditions during the execution of the system.

To further integrate agile approaches in our process we additionally want to
integrate model-driven unit testing in our development process. Therefore, we
have to address the following three problems of model-driven testing [9]:

1. the generation of test cases from models,
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Fig. 1. Overview of the testing approach

2. the generation of a test oracle to determine the expected results of a test,
3. the execution of tests in test environments.

The basic idea of our testing approach is that the specification of an operation
by a pre- and post-conditions (visual contract) can be viewed as a test oracle
[10] and runtime assertion checking can be used as a decision procedure. Thus,
our visual contacts can be viewed as test oracles since the JML assertions are
generated from our visual contracts. Still, we need to answer the problem of
how to generate test cases from models. Therefore, we want to combine well-
known testing techniques for the generation of test input parameters and model
checking to be able to create concrete system states. The idea how to create test
cases is described in detail in Sect. 5.1.

3 Modeling with Visual Contracts

We show how to specify a system with visual contracts by the example of an
online shop. We distinguish between a static and a functional view. UML class
diagrams are used to represent the static view of a system specification. Fig-
ure 2 shows the class diagram of the sample online shop. We use the stereotypes
control and entity expressing a different role of a class in the implementa-
tion. Instances of control classes encapsulate the control related to a specific use
case and coordinate other objects. Entity classes model long-lived or persistent
information. The control class OnlineShop is connected to the entity classes of
the system via qualified associations. A rectangle at an association end with a
qualifier (e.g. productNo) designates an attribute of the referenced class. The
qualifier allows us to get direct access to specific objects.



Model-Driven Unit Testing 5

Fig. 2. Class diagram specifying static structure of online shop

Fig. 3. Visual contract for operation cartCreate

Class diagrams are complemented by visual contracts that introduce a func-
tional view integrating static and dynamic aspects. Visual contracts allow us to
describe the effects of an operation on the system state of the system. Thus, for
our visual contracts we take an operation-wise view on the internal behavior.

In the following, we want to explain our visual contracts by two examples.
The operation cartCreate of the control class OnlineShop creates a new cart.
Figure 3 shows a visual contract that describes the behavior of the operation. The
visual contract is enclosed in a frame, containing a heading and a context area.
The keyword vc in the heading refers to the type of diagram, visual contract in
this case. The keyword is followed by the name of the operation that is specified
by the visual contract. The operation name is followed by a parameter-list and
a return-result if they are specified in the class diagram. The parameter-list is
an ordered set of variables and the return-result is also a variable. The variables
of the parameter-list and the return-result are used in the visual contract.

The visual contract is placed in the context area and consists of two UML
composite structure diagrams [11], representing the pre- and the post-condition
of an operation. Each of them is typed over the design class diagram. The se-
mantics of our visual contracts is defined by the loose semantics of open graph
transformation systems [12]. The basic intuition for the interpretation of a visual
contract is that every model element, which is only present on the right-hand side
of the contract, is newly created, and every model element that is present only
on the left-hand side of the contract, is being deleted. Elements that are present
on both sides are unaffected by the contract. Additionally, we may extend the
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Fig. 4. Visual contract for operation cartAdd

pre- or post-condition of a visual contract by negative pre-conditions (i.e., neg-
ative application conditions [13]) or respectively by negative post-conditions. A
negative condition is represented by a dark rectangle in the frame. If the dark
rectangle is on the left of the pre-condition, it specifies object structures that
are not allowed to be present before the operation is executed (see Fig. 4). If the
dark rectangle is on the right of the post-condition, it specifies object structures
that are not allowed to be present after the execution of the operation.

The contract as described in Fig. 3 expresses that the operation cartCreate
can always be executed, because the pre-condition only contains the model ele-
ment self, i.e. the object executing the operation. As an effect, the operation
creates a new object of type Cart and a link between the object self and the
new object. Additionally, the object c:Cart is the return value of the operation
cartCreate as indicated by the variable c used in the heading.

Figure 4 shows a more complex contract specifying the operation cartAdd.
This operation adds a new CartItem, which references an existing Product, to
an existing Cart. In contrast to the visual contract of Fig. 3, the variables of the
parameter-list and the return-value are now used to specify values of attributes
of the objects. For a successful execution of the operation, the object self must
know two different objects with the following characteristics: an object of type
Cart that has an attribute cartId with the value cid, and an object of type
Product that has an attribute productNo with the value prNo. The concrete
argument values are bound when the client calls the operation. The same Cart
object is reused in the negative pre-condition. The negative pre-condition extends
the pre-condition by the requirement that the Cart object is not linked to any
object of type CartItem that has an attribute productNo with the value prNo.
This means, it is not permitted that the product is already contained in the cart.
As a result, the operation creates a new object of type CartItem with additional
links to previously identified objects. The return value of the operation is the
content of the attribute cartItemId of the newly created object.
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4 Translation to JML

After describing the modeling of a software system with visual contracts, we now
present how the model-driven software development process continues from the
design model. A transformation of visual contracts to JML constructs provides
for model-driven monitoring of the contracts. The contracts can be automati-
cally evaluated for a given state of a system, where the state is given by object
configurations. The generation process as well as the kind of code that is gener-
ated from a class diagram and the structure of a JML assertion that is generated
from a visual contract are described in detail in [2, 4]. Here we only describe the
transformation more generally and from a methodical perspective.

Each UML class is translated to a corresponding Java class. For attributes
and associations, the corresponding access methods (e.g., get, set) are added.
For multi-valued associations we use classes that implement the Java interface
Set. Qualified associations are provided by classes that implement the Java
interface Map. We add methods like getProduct(int productNo) that use the
attributes of the qualified associations as input parameters. Operation signatures
that are specified in the class diagram are translated to method declarations in
the corresponding Java class.

For each operation specified by a visual contract, the transformation of the
contract to JML yields a Java method declaration that is annotated with JML as-
sertions. The pre- and post-conditions of the generated JML assertions are inter-
pretations of the graphical pre- and post-conditions of the visual contract. When
any of the JML pre- and post-conditions is evaluated, an optimized breadth-first
search is applied to find an occurrence of the pattern that is specified by the pre-
or post-condition in the current system state. The search starts from the object
self which is executing the specified behavior. If the JML pre- or post-condition
finds a correct pattern, it returns true, otherwise it returns false.

5 Test Case Generation and Test Execution

In the previous sections we explained how a software designer develops a design
model and how Java class skeletons and JML assertions can be generated from
them. We also explained how a programmer can complete the generated code
fragments to build a complete executable application. After these steps we want
to test our application. In Sect. 2 we explained the three tasks of model-driven
testing. In this section we will explain how we handle the first and the third
task, i.e. the generation of test cases and the execution of a test. The second task
(the generation of a test oracle) is described in Sect. 4 since we can interpret the
JML assertions as test oracles. Similar to classical unit-testing, our test items are
operations. The behavior of an operation is dependent of the input parameters
and the system state. Thus, a test case has to consider the parameter values of
an operation and a concrete system state.
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Fig. 5. Three steps of test case generation

5.1 Test Case Generation

A test case for an operation consists of concrete parameter values and a concrete
system state. We can generate a test case for an operation from our model in
three successive steps. In the following, we explain how to generate a sample test
case for the operation cartAdd (Fig. 4). Figure 5 illustrates the three steps.

In the first step, we generate values for the input parameters of an operation
as specified in the class diagram. In Fig. 5 we generated the parameter values
for the operation cartAdd randomly. For the parameter cid the value “abc” is
generated. The parameter prNo gets the value “def” and the variable num gets
the value “1”. Beside a the random generation of input parameters, we could also
use other techniques for test data generation, e.g. equivalence-class partitioning
or boundary value analysis (see e.g. [14]).

To generate a sufficient system state for testing, we have to execute two
further steps. Since the visual contracts specify system state requirements, we
use them as source for generating the system state. Therefore, we initialize the
pre-condition of a visual contract with the parameter values generated in step
one. The variables in the parameter-list are used to restrict the attribute values
of objects in the pre-condition as explained in Sect. 3. Thus, the initialization
gives an object structure. In this object structure some of the attributes have
concrete values. Figure 5 shows how the attributes productNo and cartId of
the classes Product and Cart are initialized with the parameter values of step
one according to the pre-condition in Fig. 4. It is important to notice that this
object structure describes a system state only partially.

In the last step of our test case generation, we have to find out how to gen-
erate a system state which contains the object structure found in step two. Due
to the fact that the object structure in the previous step defines a system state
only partially, we cannot just build a system state by creating the known objects
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and attribute values. Such a system state would be incomplete and it would be
artificial in a sense that the application would never create such a system state
at runtime. Additional objects or attribute values can be created during the
execution of the systems at runtime and these may have side-effects on the ex-
ecution of an operation. Thus, tests should work on realistic system states. To
avoid these artificial system states it would be useful to build a system state by
using the control operations of the system itself. We assume that each operation
call leads to a state change of the system. Thus, we have to find a sequence
of operation calls that starting from the initial system state lead to a sufficient
system state which contains this object structure. As a visual contract describes
the system state change of an operation, we can use these contracts to com-
pute all possible states of the system. Therefore, we consider a system state as a
graph and the visual contracts constitute production rules of a graph transition
system. Figure 5 illustrates how we want to generate a transition system. Ini-
tially the system state comprises just an instance (self) of the controller class
OnlineShop. Executing, e.g., the operation cartCreate makes the in Fig. 3 spec-
ified changes on the system state. Thus, a new object of type Cart is generated
and linked to the control object self. Executing further operations brings the
system to a state sv which contains the object structure generated in step two.
Knowing all visual contracts and an initial state, we can compute the graph
transition system and search for a production sequence that creates a system
state which contains the object structure found in step two. These computations
can be done automatically with model checking techniques [15]. The computed
production sequence directly refers to an operation sequence which brings the
system state to some desired state containing the object structure computed in
step two. If no sufficient production sequence is found in the graph transition
system (the searched object structure cannot be constructed using the existing
operations), our test case generation approach has to backtrack to step one and
generate other test data.

5.2 Test Execution with Embedded Oracles

After test cases are generated, the test execution can start. Test execution com-
prises two main steps as shown in Fig. 6. First, the operation sequence deter-
mined by the test case generation must be executed in order to set the system
state. Second, the operation under test is called with the test input parameters
also generated by the test case generation.

The embedded assertions lead to a run-time behavior of an operation call as
shown in Fig. 6. When the operation under test is called, a pre-condition check
method evaluates the method’s pre-condition and throws a pre-condition viola-
tion exception if it does not hold. If the pre-condition holds, then the original,
manually implemented operation is invoked. After the execution of the origi-
nal operation, a post-condition check method evaluates the post-condition and
throws a post-condition violation exception if it does not hold. If the embed-
ded assertions throw an exception then the implementation does not behave
according to its specification. Thus, we have found an error.
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Fig. 6. Run-time behavior of test execution

6 Tool Support

Most of the steps of our approach can be supported by tools. In former pub-
lications we have reported on our Visual Contract Workbench, an integrated
development environment for using visual contracts in a software development
process [16]. This development environment allows software designers to model
class diagrams and specify the behavior of operations by visual contracts. It
further supports automatic code generation as described in Sect. 4.

The most challenging task of our test generation approach is finding an oper-
ation sequence for setting a system state as explained in Sect. 5.1. This task can
be automatically solved by model checking tools. A candidate for our purposes
is GROOVE [17], a model checker for attributed graph transition systems. The
test execution can be implemented by a test driver as shown in Fig. 6. In the
context of JML, we can use the JMLUnit tool [18] for this purpose.

7 Conclusion

We have developed an approach that lifts the Design by Contract (DbC) idea,
which is usually used at the code level, to the model level. Visual contracts are
used as a specification technique. They are used to specify system state transfor-
mations with pre- and post-conditions which are modeled by UML (composite)
structure diagrams. Further, we presented how to use the visual contracts in
a software development process. A translation of the visual contracts into the
Java Modeling Language, a DbC extension for Java, enables the model-driven
monitoring. To support model-driven monitoring, we provide a visual contract
workbench that allows developers to model class diagrams and visual contracts.
Further the workbench supports automated code generation.
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In this paper, we have shown how we want to extend our approach with
model-driven unit testing. In our testing approach, a test case consists of pa-
rameter values and a concrete system state. The visual contracts – respectively
the generated JML assertions – serve as test oracles to decide whether a manual
implementation is correct according to its specification. In future work we will
concretize our testing approach and extend our workbench with testing facilities.

References

1. Meservy, T.O., Fenstermacher, K.D.: Transforming software development: An
MDA road map. IEEE Computer 38 (2005) 52–58

2. Lohmann, M., Sauer, S., Engels, G.: Executable visual contracts. In Erwig, M.,
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