
Palladio-based Performance Blame Analysis
Frank Brüseke, Gregor Engels

s-lab – Software Quality Lab
University of Paderborn
Paderborn, Germany

fbrueseke@s-lab.upb.de,
engels@s-lab.upb.de

Steffen Becker
Heinz-Nixdorf Institute

University of Paderborn
Paderborn, Germany

steffen.becker@upb.de

ABSTRACT

Performance is an important quality attribute for business infor-

mation systems. When a tester has spotted a performance error,

the error is passed to the software developers to fix it. However, in

component-based software development the tester has to do blame

analysis first, i. e. the tester has to decide, which party is responsi-

ble to fix the error. If the error is a design or deployment issue, it

can be assigned to the software architect or the system deployer. If

the error is specific to a component, it needs to be assigned to the

corresponding component developer. An accurate blame analysis

is important, because wrong assignments of errors will cause a

loss of time and money.

Our approach aims at doing blame analysis for performance errors

by comparing performance metrics obtained in performance test-

ing and performance prediction. We use performance prediction

values as expected values for individual components. For perfor-

mance prediction we use the Palladio approach. By this means,

our approach evaluates each component’s performance in a cer-

tain test case. If the component performs poorly, its component

developer needs to fix the component or the architect replaces the

component with a faster one. If no component performs poorly,

we can deduce that there is a design or deployment issue and the

architecture needs to be changed. In this paper, we present an

exemplary blame analysis based on a web shop system. The ex-

ample shows the feasibility of our approach.

Categories and Subject Descriptors

C.4 PERFORMANCE OF SYSTEMS, D.2.5 Testing and Debug-

ging

General Terms

Measurement, Performance, Design

Keywords

CBSE, blame analysis, test, performance prediction, Palladio

1. Introduction
Performance is an important quality attribute for business infor-

mation systems. Performance requirements are usually specified

at the system boundary of such systems. These requirements can

be validated using performance tests. The tests are performed after

the implementation of all parts of the software participating in the

test. However, to optimize the performance at design time, one

can use model-based performance prediction. These approaches

analyze a model of the system’s software architecture to deduce

what the performance of the system will be.

Suppose the tester has spotted a performance error. So, the system

is not fulfilling one of its performance requirements. In traditional

approaches, the error is then given back to the software develop-

ers who fix the error. If necessary, they escalate the error to the

party that is responsible for the artifact in which it is occurring

first, e. g. the software architect. In traditional approaches, it is

relatively easy to find the responsible parties to fix the error in the

blamed development artifacts. Usually, there is only one develop-

er group that is responsible for each kind of artifact (i. e. software

architecture, source code, etc.).

In component-based software development, various component

developers provide components. Therefore, it is important that the

tester assigns errors accurately to the responsible component

developers. Moreover, the components may be acquired from the

market. So, it may incur additional costs to mistakenly assign an

error to a particular component developer. The tester must decide

whether an error is a design or deployment issue, or a component

issue. An example for a design issue might be that the component

composition employs an unsuited design pattern. An example for

a deployment issue is that the components are allocated to hard-

ware in a non-optimal way. If an error is not a design or deploy-

ment issue, the tester has to decide, which component developer

needs to fix a certain component they contributed to the system.

The problem described is called “blame analysis” [4].

Some design issues can already be identified at design time using

model-based performance prediction. Thus, system architects can

optimize their design models and avoid implementing such flawed

designs. However, sometimes design issues remain undetected

despite performance predictions being used. These design issues

as well as the component-related errors can only be sorted out by

using tests.

When it comes to individual components, one might assume that

one can analyze a performance error early by the use of compo-

nent tests. However, this is not feasible because component tests

only evaluate the implementation of the component and ignore its

environments. This is also applies to component tests that are

specifically made for component-based system, such as built-in

tests [3]. Built-in tests are component tests shipped alongside or

inside a component. In spite of being ignored in component tests,

the environment of a component is crucial to its performance [13].

The environment of a component consists of:

 other components,

 usage of the system,

 hardware.

With the approach we present in this paper, we want to contribute

to the blame analysis for performance issues. Our approach is able

to decide for each component, if it performs well in a certain test

© ACM, (2011). This is the author’s version of the work. It is posted

here by permission of ACM for your personal use. Not for redistribu-

tion. The definitive version was published in “Proceedings of the 16th
international workshop on Component-oriented programming”

(WCOP 2011), {ISBN: 978-1-4503-0726-0, (June 2011)}

http://doi.acm.org/10.1145/2000292.2000298

case. By this means, we want to identify who needs to fix compo-

nent-related errors. If no component performs poorly in a test, we

deduce a design or deployment issue in the software architecture.

As we already pointed out, we cannot just employ performance

component tests for this task, because of the lacking environment

information. We also cannot evaluate the performance of individ-

ual components in system tests, as we have no expected values for

their performance useable as test oracles. Expected results for

individual components are neither given in the requirements nor is

it possible to derive exact values from the software architecture.

However, model-based component-prediction often works with

contracts stating how well a component is meant to perform.

These contracts are used to predict how well the component-based

system will perform in a particular situation and setup. For exam-

ple, this can be done with the Palladio component model

(PCM) [2]. Performance prediction can also supply performance

metrics on component-level.

Our approach is depicted in Fig. 1. It uses the performance predic-

tion results as expected values (cf. step 1 in Fig. 1). In step 3, we

compare performance prediction results from step 1 for individual

components with corresponding test results from step 2. The

results of this comparison are then used to evaluate, if each of the

components perform well. Otherwise, we suspect a design or

deployment issue. The central activities of our approach are steps

3 and 4, while the first two steps are prerequisites.

In this paper, we show test cases as well as performance models

based on a web shop example. The example serves for illustration

purposes as well as proof of concept. As a next step, we want to

apply our approach to the Common Component Modeling Exam-

ple (CoCoME) [7]. In the future, we want to use our approach on

a real-world open source component-based business information

system.

The contribution of this paper is that it introduces an approach

enabling the tester to do blame analysis. The tester can decide for

each component, if its performance was sufficient in a certain test

case. If not, the corresponding component developer needs to fix

the error. If all components perform well, the tester can deduce a

design or deployment issue. By this means, one can analyze who

needs to fix performance errors found in testing. The blame analy-

sis is done by comparing measurements for individual compo-

nents from performance tests to those from model-based perfor-

mance prediction.

The remainder of the paper is structured as follows. In Section 2

we introduce an example that is used throughout the paper to

explain our approach. Next, we introduce the Palladio approach

(cf. Subsection 3.1) and its models as a foundation of our work.

Moreover, we also introduce performance test cases (cf. Subsec-

tion 3.2) as one of the key artifacts of our approach. In Section 5,

we illustrate our approach. First, we introduce test cases based on

Palladio models (cf. Subsection 5.1). Second, we explain an ex-

ample of blame analysis using our approach (cf. Subsection 5.2).

Lastly, Section 6 concludes the paper and gives an outlook on our

future work.

2. Example introduction
This section introduces an example that we use throughout the

paper to explain our approach. As our approach focuses on busi-

ness information systems, we have chosen a web shop system as

an example. The web shop allows customers to either browse

through the products organized in categories or to search products

via tags or full text search. Customers can also put products into

their shopping cart. After browsing the shop customers can pro-

ceed to the checkout and pay for the products in their shopping

cart. Fig. 2 depicts all the use cases of the exemplary web shop.

Performance-wise the web shop system needs to fulfill certain

response time and throughput requirements. These requirements

are stated using quantile values. This is common for business

information systems. The requirements for our exemplary web

shop are listed in Table 1.

The overall component architecture of the system as envisioned

by the software architect is depicted in Fig. 3. The central “Web”-

Table 1: Web shop requirements

Response time requirements:

 90% of requests per hour belonging to use case “Browse

catalog” shall be answered in less than 200 ms.

 80% of the requests per hour belonging to the use case
“Search product” shall be answered in less than 500 s.

Throughput:

90000 requests in a two hour period, distributed among the use

cases as follows:

 45% Browse catalog

 35% Search for product

 12% View News

 …

Fig. 2: Use cases of the web shop example system

Customer

Submit product

for sale

Search for

prducts

Browse the

catalog

Buy cart items

 Tag search

 Full text search

View news

Put product into

cart

Remove product

from cart

ShopAssistant

User

Add news text

Web shop system (internal)

News service

Make payment

Payment system

<<include>>

<<include>>

Deliver current

news texts

 Login
<<include>>

 Show cart
<<include>>

<<include>>

Fig. 1: Overview of our approach

Component

contract

Component

implementation

1) Performance

prediction

Environment

specification

Performance

metrics

Executable

system

2) Test
Performance

metrics

3) Compare

4) Use result

for blame analysis

Test case

component generates HTML-pages and coordinates the workflow

internally. The other components are doing the actual work. For

example, the “Cart”-component manages the shopping cart of

each customer. Moreover, the “Catalog”-component holds the

catalog of all available products and their distinction into catego-

ries. For instance, it participates in the “Browse catalog”-use case.

3. Foundations
The approach presented in this paper makes use of the Palladio

approach to analyze performance models. Subsection 3.1 intro-

duces Palladio. It summarizes its models and the roles that are

responsible for them.

The performance test cases are important artifacts of the tests

preceding our approach. Test cases are important because they

influence the test result’s interpretation. We will give a short

overview of test case structure and characteristics in Subsec-

tion 3.2.

3.1 Palladio
In Fig. 1, we give a general overview of our approach. The upper

part of the diagram comprises the performance prediction part of

the approach. It illustrates that we need component contracts and

environment specifications to predict the performance of the

system.

We choose the Palladio component model (PCM) [2], [1], [9] for

the performance prediction part of our approach. Our approach, as

well as Palladio, focuses on component-based business informa-

tion systems. Palladio is able to evaluate typical performance

requirements of business information systems including mean and

quantile metrics. Furthermore, Palladio is able to model the com-

ponent’s environment (cf. Section 1). I. e. other components,

including external services, can be specified. Palladio can analyze

their interaction, including data flow and component configura-

tion. In addition, the PCM can express the usage of the system by

the user. The hardware environment and the allocation of the

component can also be modeled. Lastly, Palladio offers solid tool

support. It not only allows us to model business information sys-

tems, but also to analyze and simulate Palladio models to predict

their performance.

The PCM consists of different diagram types that assist the differ-

ent roles participating in the component-base development

process. Palladio offers separate diagram types for each of the

roles. The different diagram types and the roles responsible for

them are:

 component repository (component developer, software

architect),

 service effect sepecification (component developer),

 system model, also named composition (system archi-

tect),

 resource environment (system deployer),

 allocation (system deployer).

A component repository is supplied by the component developer.

It defines the components and their interfaces. These component

definitions are also done by the software architect. The software

architect uses them as blue prints to acquire components. Each

component in the system needs to be in one repository. The com-

ponent repository supplied by the component developer also

includes service effect specifications (SEFFs). They describe the

performance-relevant abstractions of each interface method.

SEFFs can be seen as performance contracts for the specific me-

thod they describe. SEFFs are very similar to UML activity dia-

grams, but add resource usages as well as probabilistic loops and

branches. SEFFs can be parameterized to be environment-

independent. Parameters are, for example, used to model the

effect of different inputs to the service or different configurations

of the component.

The software architect then assembles components from different

vendors into a complete system. The software architect specifies

this composition in a system diagram. The system deployer speci-

fies on which hardware the resulting system will be deployed

(resource environment). The system deployer also models which

components will be allocated on which hardware. The domain

experts specify the user behavior in usage models. Usage models

cover the order and frequency of user calls to certain methods at

the system boundary and are similar to SEFFs. Both, usage mod-

els and SEFFs, are similar to UML activity diagrams. In usage

models, only method calls can be modeled. In SEFFs, one can

also model internal computation, resource acquisition etc. Lastly,

the QoS analysts are responsible for integrating the models and

executing the performance analysis.

3.2 Performance test cases
As the lower part of Fig. 1 shows, our approach interprets mea-

surements obtained in testing. Test cases are a key artifact in our

approach, because test cases are important for the interpretation of

measurements.

Test cases in general consist of preconditions, input values, ex-

pected results, and expected postconditions [14]. The IEEE 829

standard [8] also structures test cases in a very similar way (cf.

Fig. 3: components of the example web shop system

CD: web shop

Web shop system (internal)

Catalog

Cart

Payment

Web

News

Web

search

browse

CRUD

Payment

RSS

add

Login

Login

cartInfo

SQL database
SQL

Mail server

Mail

Table 2: test cases according to the IEEE 829 standard [8]

2. Details (once per test case)

2.1. Test case identifier

2.2. Objective

2.3. Inputs

2.4. Outcome(s)

2.5 Environmental needs

2.6. Special procedural requirements

2.7. Intercase dependencies

Table 2). However, they subsume the expected values and post-

conditions under the heading “Outcome(s)”. The preconditions are

included under the heading “Special procedural requirements”.

This section of the test case also comprises instructions for the test

case execution, such as what tools need to be used. Most notably,

they add “environmental needs” to test cases. This can be used to

specify the test environment needed for this test case, which is

very important in performance testing. The performance depends

on the hardware used in the test as well as the allocation of the

components to the hardware.

As performance testing is about creating load on the system, it

needs good tool support. This does not only apply to test execu-

tion, but also to the analysis of performance measurements.

Moreover, it is common to randomly generate input values to get

the high volume of test data. To create test cases, the tester needs

to specify transactions (e. g. use cases). Then, performance test

cases are built by either testing one transaction in isolation or

several transaction executed concurrently. Molyneaux [12] de-

scribes several types of such performance test cases. Most com-

monly, the load test is used. It uses a realistic mix of transactions

to validate if the system can cope with a realistic load.

4. Related work
The main part of our approach is about testing and the interpreta-

tion of test results. There are several approaches of built-in tests

(summarized by Beydeda [3]). Built-in tests are component tests

that optionally can be generated by test generators. Built-in tests

are shipped along-side or inside the component itself. They can

then be executed (or generated and executed) by the software

architect. The software architect does not need any deep under-

standing of the internals of the component to do the test. Moreo-

ver, the tests are usually given in source code, so that the software

architect can see what is being tested and build confidence in

them.

The tests or test generators are implemented by the component

developers. Built-in tests are self-validating with preset accep-

tance criteria. While this is acceptable for functional tests, it is not

for performance tests. In performance testing, the needed perfor-

mance depends a lot on the field of application. Built-in tests

employ specific knowledge of the component, because they are

supplied by the component developers. In contrast, built-in tests

are ignorant of the environment of the component. The knowledge

of the environment in which the component is used is, however,

very important in our case.

Another approach to component-based testing is assume-

guarantee testing introduced by Giannakopoulou et al. [5]. As-

sume guarantee testing checks if a component shows the guaran-

teed behavior, given that the modeled assumptions hold. The

assumptions explicitly model the environment of the components.

In this approach, all components are modeled using labeled transi-

tion systems. The approach will generate test cases based on the

transition systems and test each component in isolation. Doing

this, it can check for properties affecting the global properties of

the system. However, this approach is only applicable for testing

functional properties.

The approach most closely related to our approach is the one

introduced by Groenda [6]. Groenda proposes to assess the quality

of behavior specifications using an automated model-based testing

approach. This approach is also based on Palladio models. It

derives test cases from SEFFs and component repository specifi-

cations. In this approach each service description (i. e. each me-

thod a component provides) is tested in isolation. To measure the

performance, each section of a SEFF (e. g. internal computation

or external call) is instrumented. Groenda uses byte code counting

instead of time measuring. This way, they get results that may be

ported to different deployment scenarios. The results of these

measurements are then compared to those obtained from perfor-

mance prediction. The deviation of the results indicates the quality

of the specification.

Our approach also compares performance metrics from the test

with those obtained by performance prediction using Palladio.

While Groenda derives test cases from a Palladio model as well,

he does so on the basis of SEFFs and component specifications

instead of usage models. In our scenario, we rely on regular per-

formance tests. These usually execute several transactions concur-

rently. So, we need to additionally specify how these more com-

plicated test case inputs shall load the system. Besides, the partic-

ular deployment (i. e. the hardware and operating system) and the

concurrently running requests can influence each other. So in our

case, the performance metrics should be obtained by measurement

and not bytecode counting.

5. Approach
As we argued before, we need to analyze the performance of

individual components for a successful blame analysis. In blame

analysis, one needs to decide if there is a component-related error,

or a design or deployment issue. If there is a component-related

error, then we need to know which component is affected. Our

approach evaluates the performance of individual components. It

compares performance metrics for individual components ob-

tained by testing to those obtained by model-based performance

prediction.

In Fig. 4, we have refined the general overview (cf. Fig. 1) to

include the Palladio artifacts (cf. Subsection 3.1). Furthermore, it

also associates the responsible roles to each of the artifacts ac-

cording to the Palladio process [10]. In particular, the “environ-

ment specification” breaks down into the following parts:

 composition (system diagram),

 resource environment,

 allocation diagram,

 usage models.

The component contracts are modeled using SEFFs in Palladio.

They are supplied by the component developers. We assume that

the component developers guarantee the performance that the

Fig. 4: Refined view of the introduced approach

PCM-environment specification

Component

contract

(SEFF)

Component

implementation

1) Performance

prediction

Compo-

sition

Component

developer

System deployer System architect

Executable

system

2) Test
Performance

metrics

3) Compare

4) Use result

for blame analysis

Test case

Tester

Usage

model

System deployer Domain expert

Allocation

diagram

Resource

environment

System architect

Performance

metrics

analyses or simulations of their SEFFs yield in the context of a

complete Palladio model. In addition, the software architect uses

the Palladio model including the contract SEFFs to optimize the

software design. So, this Palladio model is either specifying the

system or is at least an abstraction of the specification used to

optimize design model. Either way, the used Palladio corresponds

to the specification.

The central “compare” activity of our approach (cf. activity 3 in

Fig. 4) relies on the performance metrics provided by performance

prediction and test (cf. activities 1 and 2 in Fig. 4). Our approach

is about finding out who needs to fix an error that occurred after

completion of the testing phase. Performance prediction is only a

means to interpret measurements obtained during the test. This

means that we react on failed performance tests1 by interpreting

test results using performance prediction results. Thus, there needs

to be performance prediction results for all failed performance test

cases.

But not any performance prediction result can be used to interpret

the results of a certain test case. The performance prediction

results need to stem from a performance prediction scenario that is

comparable to the test case in question. In Subsection 5.1, we

explain how test cases can be written comprising Palladio models.

Fig. 4 depicts that that these test cases can not only be used for

testing but also for performance prediction. For these test cases

one can always perform a performance prediction using the Palla-

dio models in the test case. Thus, we can guarantee that there

always are either comparable performance prediction results

available or that they can be produced easily.

In Subsection 5.2, we show an example for the actual blame anal-

ysis. I. e. we want to find out who needs to fix a particular error in

the exemplary web shop system. We present performance metrics

obtained in test2 and performance prediction respectively. Both of

them rely on a test case specified using Palladio models (cf. Sub-

section 5.1). Thus, we can draw valid conclusions.

5.1 Comparable performance metrics from

test and performance prediction
In this section, we will show test cases that are specified using

Palladio models. We need comparable performance prediction

results for any failed test case. Defining test cases with the help of

Palladio models enables us to get the required prediction results.

For these test cases we are using diagrams of the Palladio model

to replace certain parts of the test case. These diagrams need to be

based on other parts of a complete Palladio model. Ideally, they

are based on the model used to optimize the design models. We

need to make some assumptions on the underlying Palladio mod-

el.

We assume that the specification of hardware resources and

hardware usages is consistent throughout all project artifacts. This

includes the resource environment specifying the resource and the

SEFFs specifying the resource usages. For example, a consistent

understanding of CPU usage exists, whether a CPU usage of

10 CPU units is interpreted in the same way by all component

developers, e. g. all software architects or QoS-analysts. Our

1 We assume that the tester can always evaluate, if a test failed or

passed by consulting the requirements.

2 The test results are hypothetical, as we have not implemented the

example web shop.

approach inherits this assumption from Palladio as this is needed

for proper performance prediction as well.

Moreover, we must add the assumption that resource specification

and resource usage values are consistent to the real test environ-

ments. This means, that the relation of a resource usage to the

total amount of resources available needs to be realistic. For ex-

ample, suppose that a method uses 10 CPU units and the CPU is

specified with a total capacity of 1000 units. For example, this

corresponds to reality, if the method uses 10 ms CPU time in our

test environment. The relation of used resources to available

resources is in both cases 10/1000.

We propose to write test cases using Palladio diagrams. As shown

in Table 2 test cases mainly consist of preconditions, inputs,

outcomes (i. e. expected outputs and postconditions), and the test

environment. The inputs can be modeled with usage models and

the test environment can be modeled using allocation diagrams.

We expect that any hardware resource that might be needed in the

allocation diagram is already defined in the resource environment.

Moreover, we expect that the software architecture is fixed at the

time of test design, such that all components and interfaces are

available in a component repository. In the following, we will

investigate how usage models and allocation diagrams can be

used in test cases.

The allocation diagram describes which components are allocated

to which hardware resources. The allocation model shall reflect

the test environment in our test cases. Fig. 5 contains a sample

allocation diagram. It shows one block for the only server in our

example set up and all the components in our exemplary web shop

inside. In our example, all components are allocated to one server.

If there were more servers, there would be one block for each of

them. The connections between the servers are not part of the

allocation model. They are specified in the resource environment.

The usage model states how the system is going to be used. Usage

models specify, which interface methods a user calls in succes-

sion. This specification may include branches and loops. I. e. a

user can call a method not at all or several times in a certain in-

stantiation of the usage model. Furthermore, one can specify how

many users are loading the system.

In Fig. 6 we see an example of a usage model. It depicts the

“Browse catalog” use case of our web shop example. Usage mod-

els are similar to UML activity diagrams. According to the exem-

plary usage model, the user calls the “startPage”, “catalogPage”,

“categoryView”, and “productView” methods of the Web compo-

nent at the system boundary in succession. The “productView”-

method is optional to call, as it is called zero times with 20%

probability. But the method may also be called up to eight times.

Fig. 5: Example PCM allocation diagram

Eight calls per user happen 20% of the time. Moreover, we also

modeled the possible input values for the “productId” parameter

of the “productView” method. It can assume the values 4, 7, and 9

with 20%, 50%, and 30% probability respectively. Instead of the

actual values of “productId”, we could also model its byte size or

the number of elements in it. Lastly, Fig. 6 shows how often (in

seconds) a user enters the system according to the “open work-

load” block at the top.

The example usage model in Fig. 6 shows that usage models are

able to specify the inputs of performance test cases. It allows us to

model the sequence and frequency of method calls. Moreover, we

can model the actual input values where necessary and can also

use probability functions to state how to generate input values.

However, usage models lack expected results and expected post-

conditions as well as the preconditions of the test case. So, these

parts of the test case are not given in terms of Palladio models.

In Table 3, we show a sample test case for the “Browse catalog”

use case. The test case includes the Palladio usage model and

allocation model shown in Fig. 6 and Fig. 5. We can also analyze

the performance of this use case with Palladio. The test case

supplies the usage model and the allocation model. In addition, we

need a component repository, a system model (i. e. component

composition), and a resource environment. These models form a

complete Palladio model together and enable us to analyze the

performance of the model according to the test case.

5.2 Performance metric comparison and

blame analysis
Our approach helps analyzing performance errors. After perform-

ing a test, the tester needs to check first, if the test passed accord-

ing to the requirements. If the test failed our approach can be used

for analysis. Our approach can be used to decide whether each of

the components in the system is performing well. In this case, the

poorly performing components are considered erroneous and their

developers should fix them. If all components perform well, the

problem lies elsewhere. So, we suspect a design or deployment

issue. In the following, we will give an example for this analysis.

Presuming that the test case for the “Browse catalog” use case is

executed (cf. Table 3) and the tester finds that the test fails and

that the requirements violated. Consequently, the blame analysis

begins. I. e. we want to analyze who needs to fix the error the

tester found. As Fig. 7 depicts, the components “Web”, “Catalog”,

and “SQL database” participate in the use case. The use case

covers three requests. The tester communicates that the test case

failed during the “productView” requests. The tester can give us

this information because the test case (cf. Table 3) is about check-

ing request response times. If the test case would have constrained

a full execution of the use case, finding out which request is tak-

ing longer as it should, would have been part of the blame analy-

sis. However, this could be easily accomplished by looking at the

requirements, as requests are called at the system boundary.

Fig. 8 shows the additional response time measurements for the

request “productView” and the inner methods it calls. The dia-

gram depicts a histogram of their response time. On the x-axis, the

Fig. 6: PCM Usage model of the "Browse catalog" use case

Table 3: example test case with Palladio models

2 Details (once per test case)

2.1 Test case identifier:

1_Server_UC_Browse_001

2.2 Objective

Validate if the use case “Browse catalog” fulfills its

response constraints in isolation using a realistic load

for this use case.

2.3 Inputs

Cf. Fig. 6

2.4 Outcome(s)

90% of the requests shall be answered in less than

200 ms (cf. Table 1)

2.5 Environmental needs

Cf. Fig. 5

2.6 Special procedural requirements

No preconditions

Execute the test case for one hour.

2.7 Intercase dependencies

None

Fig. 7: Detailed view of use case "Browse Catalog"

SD: Browse Catalog

Web

User

Catalog

catalogPage():HTML
getCategories()

categoryView():HTML
getProductsByCategory()

productView():HTML
getDetailedProduct()

SQL database

Sql()

Sql()

Sql()

diagram shows response time measurements aggregated in clus-

ters. The response time of each method includes its own execution

time and the time the method waited for results from internally

called methods. On the y-axis, the diagram depicts the probability

with which a measurement falls into the arctual cluster. The dia-

gram depicts that the “sql” method is executing fairly fast, while

the other two methods take quite long to execute.

Now, we compare the test results (cf. Fig. 8) to the performance

prediction results depicted in Fig. 9. The performance prediction

results stem from a performance simulation based on the Palladio

models in the test case defined in Table 3. Thus, we can draw

valid conclusions by comparing the performance metrics in Fig. 8

and Fig. 9.

Fig. 9 depicts the same performance metrics as Fig. 8. I. e., the

x-axis shows clusters of method response time while the y-axis

shows probability that a measurement is part of the respective

cluster. In Fig. 9, the distribution of the measurement for each of

the methods differ are very similar. The inner methods have a

higher probability of lower response times, and the outer methods

have a higher probability of higher response time. However, there

is no such huge gap as in Fig. 8.

In Fig. 8, the response time for the “sql” method is almost identic-

al as in Fig. 9. However, the methods “productView” and “getDe-

tailedProduct” show a much higher response time than in Fig. 9.

So, we suspect that both of them are erroneous. Now we aim at

narrowing the field of slow methods down to one. The response

time for the method “productView” subsumes the response time

for the method “getDetailedProduct”. This hints at problems in the

method “getDetailedProduct” of the “Catalog” component. More-

over, the response time difference between the “getDetailedPro-

duct” curve and the “productView” curve is a bit bigger in Fig. 8,

but still similar to the difference in Fig. 9. We can deduce that the

most serious problem occurs in the method “getDetailedProduct”

of the component “Catalog”. The vendor of this component shall

fix this error.

6. Conclusions and future work
In this paper, we have presented an approach to do blame analy-

sis. It evaluates the performance of individual components. The

approach achieves this by comparing component-individual per-

formance metrics that are acquired in performance testing to those

that are acquired in performance prediction. Our approach pre-

dicts the performance of the system using a Palladio model. We

use the metrics from performance prediction as expected values. If

a component performs poorly, its component developer needs to

fix the error. If no comsponent performs poorly, we can deduce a

design or deployment issue.

As our approach relies on comparing performance metrics from

testing with those from performance prediction, we need these

values to be comparable. Thus, we have analyzed test cases and

Palladio models and shown that they partly include the same

information. We have proposed to include certain Palladio models

in test cases. In particular, the Palladio allocation and usage model

shall be used to specify the input values and the test environment

in the test cases. These two models built on an existing complete

Palladio model, e. g. the one used to optimize the design models.

We have shown an example for such a test case (cf. Table 3)

based on the use case “Browse catalog” of our example web shop.

Based on this test case we have shown that our approach can be

used for blame analysis. We have presented performance metrics

from performance prediction and performance test and have com-

pared them. By this means, we have found out that the gravest

problem occurs in the “getDetailedProduct” method. Therefore,

the component developer of the “Catalog” component would have

to fix our example error.

In the future, we plan to use the introduced approach on the

Common Component Modeling Example (CoCoME) [7]. Co-

CoME offers a complete implementation including a test bed.

Moreover, there is a Palladio model for CoCoME [11]. This will

allow us to validate our approach using a fully implemented and

more complex example. Particularly, we aim at creating blame

analysis guidelines for several types of errors. This guideline shall

include the analysis of utilization and concurrency metrics, as well

as response time metrics.

After that, we plan to evaluate our approach using a real-world

open-source business information system that had known perfor-

mance problems. We will apply our approach to the faulty version

of the software. This way we can analyze, if we can find out

which components are responsible for the performance problems.

We can confirm our findings by looking at the fix that the devel-

oper used to solve the problem.

7. REFERENCES
[1] Becker, S. 2008. Coupled model transformations for QoS

enabled component-based software design. Universität Ol-

denburg.

Fig. 9: Combined prediction result – use case "Browse cata-

log"

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

0,2

0 2 4 6 8 10 12 14 16 18 20 22

p
ro

b
ab

ili
ty

response time (ms)

Web.productView Catalog.getDetailedProductView SQL.sql

Fig. 8: Combined test results – use case "Browse catalog"

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0 20 40 60 80 100 120 140 160 180 200 220 240

p
ro

b
ab

ili
ty

response time (ms)

Web.productView Catalog.getDetailedProductView SQL.sql

[2] Becker, S. et al. 2009. The Palladio component model for

model-driven performance prediction. Journal of Systems

and Software. 82, 1 (Jan. 2009), 3-22.

[3] Beydeda, S. 2005. Research in testing COTS components -

built-in testing approaches. Computer Systems and Appli-

cations, 2005. The 3rd ACS/IEEE International Confe-

rence on (2005), 101.

[4] Gao, J. et al. 2003. Testing and quality assurance for com-

ponent-based software. Artech House.

[5] Giannakopoulou, D. et al. 2008. Assume-guarantee testing

for software components. Software, IET. 2, 6 (2008), 547-

562.

[6] Groenda, H. 2010. Usage profile and platform independent

automated validation of service behavior specifications.

Proceedings of the 2nd International Workshop on the

Quality of Service-Oriented Software Systems (New York,

NY, USA, 2010), 6:1–6:6.

[7] Herold, S. et al. 2008. CoCoME - The Common Compo-

nent Modeling Example. The Common Component Model-

ing Example. A. Rausch et al., eds. Springer Berlin / Hei-

delberg. 16-53.

[8] IEEE Computer Society 2008. IEEE Standard for Software

and System Test Documentation. IEEE Std 829-2008. (Jul.

2008), 1-118.

[9] Koziolek, H. 2008. Parameter Dependencies for Reusable

Performance Specifications of Software Components. Uni-

versity of Oldenburg.

[10] Koziolek, H. and Happe, J. 2006. A QoS Driven Develop-

ment Process Model for Component-Based Software Sys-

tems. Component-Based Software Engineering. I. Gorton

et al., eds. Springer Berlin / Heidelberg. 336-343.

[11] Krogmann, K. and Reussner, R. 2008. Palladio – Predic-

tion of Performance Properties. The Common Component

Modeling Example. A. Rausch et al., eds. Springer Berlin /

Heidelberg. 297-326.

[12] Molyneaux, I. 2009. The Art of Application Performance

Testing: Help for Programmers and Quality Assurance.

O'Reilly Media.

[13] Reussner, R.H. et al. 2004. Parametric Performance Con-

tracts for Software Components and their Compositionali-

ty. Proceedings of the 9th International Workshop on

Component-Oriented Programming (WCOP 04) (2004).

[14] Spillner, A. et al. 2011. Software Testing Foundations: A

Study Guide for the Certified Tester Exam. Rocky Nook.

	1. Introduction
	2. Example introduction
	3. Foundations
	3.1 Palladio
	3.2 Performance test cases

	4. Related work
	5. Approach
	5.1 Comparable performance metrics from test and performance prediction
	5.2 Performance metric comparison and blame analysis

	6. Conclusions and future work
	7. REFERENCES

