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ABSTRACT 

Performance is an important quality attribute for business infor-

mation systems. When a tester has spotted a performance error, 

the error is passed to the software developers to fix it. However, in 

component-based software development the tester has to do blame 

analysis first, i. e. the tester has to decide, which party is responsi-

ble to fix the error. If the error is a design or deployment issue, it 

can be assigned to the software architect or the system deployer. If 

the error is specific to a component, it needs to be assigned to the 

corresponding component developer. An accurate blame analysis 

is important, because wrong assignments of errors will cause a 

loss of time and money. 

Our approach aims at doing blame analysis for performance errors 

by comparing performance metrics obtained in performance test-

ing and performance prediction. We use performance prediction 

values as expected values for individual components. For perfor-

mance prediction we use the Palladio approach. By this means, 

our approach evaluates each component’s performance in a cer-

tain test case. If the component performs poorly, its component 

developer needs to fix the component or the architect replaces the 

component with a faster one. If no component performs poorly, 

we can deduce that there is a design or deployment issue and the 

architecture needs to be changed. In this paper, we present an 

exemplary blame analysis based on a web shop system. The ex-

ample shows the feasibility of our approach. 

Categories and Subject Descriptors 

C.4 PERFORMANCE OF SYSTEMS, D.2.5 Testing and Debug-

ging 

General Terms 

Measurement, Performance, Design 

Keywords 

CBSE, blame analysis, test, performance prediction, Palladio 

1. Introduction 
Performance is an important quality attribute for business infor-

mation systems. Performance requirements are usually specified 

at the system boundary of such systems. These requirements can 

be validated using performance tests. The tests are performed after 

the implementation of all parts of the software participating in the 

test. However, to optimize the performance at design time, one 

can use model-based performance prediction. These approaches 

analyze a model of the system’s software architecture to deduce 

what the performance of the system will be. 

Suppose the tester has spotted a performance error. So, the system 

is not fulfilling one of its performance requirements. In traditional 

approaches, the error is then given back to the software develop-

ers who fix the error. If necessary, they escalate the error to the 

party that is responsible for the artifact in which it is occurring 

first, e. g. the software architect. In traditional approaches, it is 

relatively easy to find the responsible parties to fix the error in the 

blamed development artifacts. Usually, there is only one develop-

er group that is responsible for each kind of artifact (i. e. software 

architecture, source code, etc.). 

In component-based software development, various component 

developers provide components. Therefore, it is important that the 

tester assigns errors accurately to the responsible component 

developers. Moreover, the components may be acquired from the 

market. So, it may incur additional costs to mistakenly assign an 

error to a particular component developer. The tester must decide 

whether an error is a design or deployment issue, or a component 

issue. An example for a design issue might be that the component 

composition employs an unsuited design pattern. An example for 

a deployment issue is that the components are allocated to hard-

ware in a non-optimal way. If an error is not a design or deploy-

ment issue, the tester has to decide, which component developer 

needs to fix a certain component they contributed to the system. 

The problem described is called “blame analysis” [4]. 

Some design issues can already be identified at design time using 

model-based performance prediction. Thus, system architects can 

optimize their design models and avoid implementing such flawed 

designs. However, sometimes design issues remain undetected 

despite performance predictions being used. These design issues 

as well as the component-related errors can only be sorted out by 

using tests. 

When it comes to individual components, one might assume that 

one can analyze a performance error early by the use of compo-

nent tests. However, this is not feasible because component tests 

only evaluate the implementation of the component and ignore its 

environments. This is also applies to component tests that are 

specifically made for component-based system, such as built-in 

tests [3]. Built-in tests are component tests shipped alongside or 

inside a component. In spite of being ignored in component tests, 

the environment of a component is crucial to its performance [13]. 

The environment of a component consists of: 

 other components, 

 usage of the system, 

 hardware. 

With the approach we present in this paper, we want to contribute 

to the blame analysis for performance issues. Our approach is able 

to decide for each component, if it performs well in a certain test 
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case. By this means, we want to identify who needs to fix compo-

nent-related errors. If no component performs poorly in a test, we 

deduce a design or deployment issue in the software architecture. 

As we already pointed out, we cannot just employ performance 

component tests for this task, because of the lacking environment 

information. We also cannot evaluate the performance of individ-

ual components in system tests, as we have no expected values for 

their performance useable as test oracles. Expected results for 

individual components are neither given in the requirements nor is 

it possible to derive exact values from the software architecture. 

However, model-based component-prediction often works with 

contracts stating how well a component is meant to perform. 

These contracts are used to predict how well the component-based 

system will perform in a particular situation and setup. For exam-

ple, this can be done with the Palladio component model 

(PCM) [2]. Performance prediction can also supply performance 

metrics on component-level. 

Our approach is depicted in Fig. 1. It uses the performance predic-

tion results as expected values (cf. step 1 in Fig. 1). In step 3, we 

compare performance prediction results from step 1 for individual 

components with corresponding test results from step 2. The 

results of this comparison are then used to evaluate, if each of the 

components perform well. Otherwise, we suspect a design or 

deployment issue. The central activities of our approach are steps 

3 and 4, while the first two steps are prerequisites. 

In this paper, we show test cases as well as performance models 

based on a web shop example. The example serves for illustration 

purposes as well as proof of concept. As a next step, we want to 

apply our approach to the Common Component Modeling Exam-

ple (CoCoME) [7]. In the future, we want to use our approach on 

a real-world open source component-based business information 

system. 

The contribution of this paper is that it introduces an approach 

enabling the tester to do blame analysis. The tester can decide for 

each component, if its performance was sufficient in a certain test 

case. If not, the corresponding component developer needs to fix 

the error. If all components perform well, the tester can deduce a 

design or deployment issue. By this means, one can analyze who 

needs to fix performance errors found in testing. The blame analy-

sis is done by comparing measurements for individual compo-

nents from performance tests to those from model-based perfor-

mance prediction. 

The remainder of the paper is structured as follows. In Section 2 

we introduce an example that is used throughout the paper to 

explain our approach. Next, we introduce the Palladio approach 

(cf. Subsection 3.1) and its models as a foundation of our work. 

Moreover, we also introduce performance test cases (cf. Subsec-

tion 3.2) as one of the key artifacts of our approach. In Section 5, 

we illustrate our approach. First, we introduce test cases based on 

Palladio models (cf. Subsection 5.1). Second, we explain an ex-

ample of blame analysis using our approach (cf. Subsection 5.2). 

Lastly, Section 6 concludes the paper and gives an outlook on our 

future work. 

2. Example introduction 
This section introduces an example that we use throughout the 

paper to explain our approach. As our approach focuses on busi-

ness information systems, we have chosen a web shop system as 

an example. The web shop allows customers to either browse 

through the products organized in categories or to search products 

via tags or full text search. Customers can also put products into 

their shopping cart. After browsing the shop customers can pro-

ceed to the checkout and pay for the products in their shopping 

cart. Fig. 2 depicts all the use cases of the exemplary web shop. 

Performance-wise the web shop system needs to fulfill certain 

response time and throughput requirements. These requirements 

are stated using quantile values. This is common for business 

information systems. The requirements for our exemplary web 

shop are listed in Table 1. 

The overall component architecture of the system as envisioned 

by the software architect is depicted in Fig. 3. The central “Web”-

Table 1: Web shop requirements 

Response time requirements: 

 90% of requests per hour belonging to use case “Browse 

catalog” shall be answered in less than 200 ms. 

 80% of the requests per hour belonging to the use case 
“Search product” shall be answered in less than 500 s. 

Throughput: 

90000 requests in a two hour period, distributed among the use 

cases as follows: 

 45% Browse catalog 

 35% Search for product 

 12% View News 

 … 

 

 

Fig. 2: Use cases of the web shop example system 
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Fig. 1: Overview of our approach 
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component generates HTML-pages and coordinates the workflow 

internally. The other components are doing the actual work. For 

example, the “Cart”-component manages the shopping cart of 

each customer. Moreover, the “Catalog”-component holds the 

catalog of all available products and their distinction into catego-

ries. For instance, it participates in the “Browse catalog”-use case. 

3. Foundations 
The approach presented in this paper makes use of the Palladio 

approach to analyze performance models. Subsection 3.1 intro-

duces Palladio. It summarizes its models and the roles that are 

responsible for them. 

The performance test cases are important artifacts of the tests 

preceding our approach. Test cases are important because they 

influence the test result’s interpretation. We will give a short 

overview of test case structure and characteristics in Subsec-

tion 3.2. 

3.1 Palladio 
In Fig. 1, we give a general overview of our approach. The upper 

part of the diagram comprises the performance prediction part of 

the approach. It illustrates that we need component contracts and 

environment specifications to predict the performance of the 

system. 

We choose the Palladio component model (PCM) [2], [1], [9] for 

the performance prediction part of our approach. Our approach, as 

well as Palladio, focuses on component-based business informa-

tion systems. Palladio is able to evaluate typical performance 

requirements of business information systems including mean and 

quantile metrics. Furthermore, Palladio is able to model the com-

ponent’s environment (cf. Section 1). I. e. other components, 

including external services, can be specified. Palladio can analyze 

their interaction, including data flow and component configura-

tion. In addition, the PCM can express the usage of the system by 

the user. The hardware environment and the allocation of the 

component can also be modeled. Lastly, Palladio offers solid tool 

support. It not only allows us to model business information sys-

tems, but also to analyze and simulate Palladio models to predict 

their performance. 

The PCM consists of different diagram types that assist the differ-

ent roles participating in the component-base development 

process. Palladio offers separate diagram types for each of the 

roles. The different diagram types and the roles responsible for 

them are: 

 component repository (component developer, software 

architect), 

 service effect sepecification (component developer), 

 system model, also named composition (system archi-

tect), 

 resource environment (system deployer), 

 allocation (system deployer). 

A component repository is supplied by the component developer. 

It defines the components and their interfaces. These component 

definitions are also done by the software architect. The software 

architect uses them as blue prints to acquire components. Each 

component in the system needs to be in one repository. The com-

ponent repository supplied by the component developer also 

includes service effect specifications (SEFFs). They describe the 

performance-relevant abstractions of each interface method. 

SEFFs can be seen as performance contracts for the specific me-

thod they describe. SEFFs are very similar to UML activity dia-

grams, but add resource usages as well as probabilistic loops and 

branches. SEFFs can be parameterized to be environment-

independent. Parameters are, for example, used to model the 

effect of different inputs to the service or different configurations 

of the component. 

The software architect then assembles components from different 

vendors into a complete system. The software architect specifies 

this composition in a system diagram. The system deployer speci-

fies on which hardware the resulting system will be deployed 

(resource environment). The system deployer also models which 

components will be allocated on which hardware. The domain 

experts specify the user behavior in usage models. Usage models 

cover the order and frequency of user calls to certain methods at 

the system boundary and are similar to SEFFs. Both, usage mod-

els and SEFFs, are similar to UML activity diagrams. In usage 

models, only method calls can be modeled. In SEFFs, one can 

also model internal computation, resource acquisition etc. Lastly, 

the QoS analysts are responsible for integrating the models and 

executing the performance analysis. 

3.2 Performance test cases 
As the lower part of Fig. 1 shows, our approach interprets mea-

surements obtained in testing. Test cases are a key artifact in our 

approach, because test cases are important for the interpretation of 

measurements. 

Test cases in general consist of preconditions, input values, ex-

pected results, and expected postconditions [14]. The IEEE 829 

standard [8] also structures test cases in a very similar way (cf. 

 

Fig. 3: components of the example web shop system 
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Table 2). However, they subsume the expected values and post-

conditions under the heading “Outcome(s)”. The preconditions are 

included under the heading “Special procedural requirements”. 

This section of the test case also comprises instructions for the test 

case execution, such as what tools need to be used. Most notably, 

they add “environmental needs” to test cases. This can be used to 

specify the test environment needed for this test case, which is 

very important in performance testing. The performance depends 

on the hardware used in the test as well as the allocation of the 

components to the hardware. 

As performance testing is about creating load on the system, it 

needs good tool support. This does not only apply to test execu-

tion, but also to the analysis of performance measurements. 

Moreover, it is common to randomly generate input values to get 

the high volume of test data. To create test cases, the tester needs 

to specify transactions (e. g. use cases). Then, performance test 

cases are built by either testing one transaction in isolation or 

several transaction executed concurrently. Molyneaux [12] de-

scribes several types of such performance test cases. Most com-

monly, the load test is used. It uses a realistic mix of transactions 

to validate if the system can cope with a realistic load. 

4. Related work 
The main part of our approach is about testing and the interpreta-

tion of test results. There are several approaches of built-in tests 

(summarized by Beydeda [3]). Built-in tests are component tests 

that optionally can be generated by test generators. Built-in tests 

are shipped along-side or inside the component itself. They can 

then be executed (or generated and executed) by the software 

architect. The software architect does not need any deep under-

standing of the internals of the component to do the test. Moreo-

ver, the tests are usually given in source code, so that the software 

architect can see what is being tested and build confidence in 

them. 

The tests or test generators are implemented by the component 

developers. Built-in tests are self-validating with preset accep-

tance criteria. While this is acceptable for functional tests, it is not 

for performance tests. In performance testing, the needed perfor-

mance depends a lot on the field of application. Built-in tests 

employ specific knowledge of the component, because they are 

supplied by the component developers. In contrast, built-in tests 

are ignorant of the environment of the component. The knowledge 

of the environment in which the component is used is, however, 

very important in our case. 

Another approach to component-based testing is assume-

guarantee testing introduced by Giannakopoulou et al. [5]. As-

sume guarantee testing checks if a component shows the guaran-

teed behavior, given that the modeled assumptions hold. The 

assumptions explicitly model the environment of the components. 

In this approach, all components are modeled using labeled transi-

tion systems. The approach will generate test cases based on the 

transition systems and test each component in isolation. Doing 

this, it can check for properties affecting the global properties of 

the system. However, this approach is only applicable for testing 

functional properties. 

The approach most closely related to our approach is the one 

introduced by Groenda [6]. Groenda proposes to assess the quality 

of behavior specifications using an automated model-based testing 

approach. This approach is also based on Palladio models. It 

derives test cases from SEFFs and component repository specifi-

cations. In this approach each service description (i. e. each me-

thod a component provides) is tested in isolation. To measure the 

performance, each section of a SEFF (e. g. internal computation 

or external call) is instrumented. Groenda uses byte code counting 

instead of time measuring. This way, they get results that may be 

ported to different deployment scenarios. The results of these 

measurements are then compared to those obtained from perfor-

mance prediction. The deviation of the results indicates the quality 

of the specification. 

Our approach also compares performance metrics from the test 

with those obtained by performance prediction using Palladio. 

While Groenda derives test cases from a Palladio model as well, 

he does so on the basis of SEFFs and component specifications 

instead of usage models. In our scenario, we rely on regular per-

formance tests. These usually execute several transactions concur-

rently. So, we need to additionally specify how these more com-

plicated test case inputs shall load the system. Besides, the partic-

ular deployment (i. e. the hardware and operating system) and the 

concurrently running requests can influence each other. So in our 

case, the performance metrics should be obtained by measurement 

and not bytecode counting. 

5. Approach 
As we argued before, we need to analyze the performance of 

individual components for a successful blame analysis. In blame 

analysis, one needs to decide if there is a component-related error, 

or a design or deployment issue. If there is a component-related 

error, then we need to know which component is affected. Our 

approach evaluates the performance of individual components. It 

compares performance metrics for individual components ob-

tained by testing to those obtained by model-based performance 

prediction. 

In Fig. 4, we have refined the general overview (cf. Fig. 1) to 

include the Palladio artifacts (cf. Subsection 3.1). Furthermore, it 

also associates the responsible roles to each of the artifacts ac-

cording to the Palladio process [10]. In particular, the “environ-

ment specification” breaks down into the following parts: 

 composition (system diagram), 

 resource environment, 

 allocation diagram, 

 usage models. 

The component contracts are modeled using SEFFs in Palladio. 

They are supplied by the component developers. We assume that 

the component developers guarantee the performance that the 

 

Fig. 4: Refined view of the introduced approach 
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analyses or simulations of their SEFFs yield in the context of a 

complete Palladio model. In addition, the software architect uses 

the Palladio model including the contract SEFFs to optimize the 

software design. So, this Palladio model is either specifying the 

system or is at least an abstraction of the specification used to 

optimize design model. Either way, the used Palladio corresponds 

to the specification. 

The central “compare” activity of our approach (cf. activity 3 in 

Fig. 4) relies on the performance metrics provided by performance 

prediction and test (cf. activities 1 and 2 in Fig. 4). Our approach 

is about finding out who needs to fix an error that occurred after 

completion of the testing phase. Performance prediction is only a 

means to interpret measurements obtained during the test. This 

means that we react on failed performance tests1 by interpreting 

test results using performance prediction results. Thus, there needs 

to be performance prediction results for all failed performance test 

cases. 

But not any performance prediction result can be used to interpret 

the results of a certain test case. The performance prediction 

results need to stem from a performance prediction scenario that is 

comparable to the test case in question. In Subsection 5.1, we 

explain how test cases can be written comprising Palladio models. 

Fig. 4 depicts that that these test cases can not only be used for 

testing but also for performance prediction. For these test cases 

one can always perform a performance prediction using the Palla-

dio models in the test case. Thus, we can guarantee that there 

always are either comparable performance prediction results 

available or that they can be produced easily. 

In Subsection 5.2, we show an example for the actual blame anal-

ysis. I. e. we want to find out who needs to fix a particular error in 

the exemplary web shop system. We present performance metrics 

obtained in test2 and performance prediction respectively. Both of 

them rely on a test case specified using Palladio models (cf. Sub-

section 5.1). Thus, we can draw valid conclusions. 

5.1 Comparable performance metrics from 

test and performance prediction 
In this section, we will show test cases that are specified using 

Palladio models. We need comparable performance prediction 

results for any failed test case. Defining test cases with the help of 

Palladio models enables us to get the required prediction results. 

For these test cases we are using diagrams of the Palladio model 

to replace certain parts of the test case. These diagrams need to be 

based on other parts of a complete Palladio model. Ideally, they 

are based on the model used to optimize the design models. We 

need to make some assumptions on the underlying Palladio mod-

el. 

We assume that the specification of hardware resources and 

hardware usages is consistent throughout all project artifacts. This 

includes the resource environment specifying the resource and the 

SEFFs specifying the resource usages. For example, a consistent 

understanding of CPU usage exists, whether a CPU usage of 

10 CPU units is interpreted in the same way by all component 

developers, e. g. all software architects or QoS-analysts. Our 

                                                                 

1 We assume that the tester can always evaluate, if a test failed or 

passed by consulting the requirements. 

2 The test results are hypothetical, as we have not implemented the 

example web shop. 

approach inherits this assumption from Palladio as this is needed 

for proper performance prediction as well. 

Moreover, we must add the assumption that resource specification 

and resource usage values are consistent to the real test environ-

ments. This means, that the relation of a resource usage to the 

total amount of resources available needs to be realistic. For ex-

ample, suppose that a method uses 10 CPU units and the CPU is 

specified with a total capacity of 1000 units. For example, this 

corresponds to reality, if the method uses 10 ms CPU time in our 

test environment. The relation of used resources to available 

resources is in both cases 10/1000. 

We propose to write test cases using Palladio diagrams. As shown 

in Table 2 test cases mainly consist of preconditions, inputs, 

outcomes (i. e. expected outputs and postconditions), and the test 

environment. The inputs can be modeled with usage models and 

the test environment can be modeled using allocation diagrams. 

We expect that any hardware resource that might be needed in the 

allocation diagram is already defined in the resource environment. 

Moreover, we expect that the software architecture is fixed at the 

time of test design, such that all components and interfaces are 

available in a component repository. In the following, we will 

investigate how usage models and allocation diagrams can be 

used in test cases. 

The allocation diagram describes which components are allocated 

to which hardware resources. The allocation model shall reflect 

the test environment in our test cases. Fig. 5 contains a sample 

allocation diagram. It shows one block for the only server in our 

example set up and all the components in our exemplary web shop 

inside. In our example, all components are allocated to one server. 

If there were more servers, there would be one block for each of 

them. The connections between the servers are not part of the 

allocation model. They are specified in the resource environment. 

The usage model states how the system is going to be used. Usage 

models specify, which interface methods a user calls in succes-

sion. This specification may include branches and loops. I. e. a 

user can call a method not at all or several times in a certain in-

stantiation of the usage model. Furthermore, one can specify how 

many users are loading the system. 

In Fig. 6 we see an example of a usage model. It depicts the 

“Browse catalog” use case of our web shop example. Usage mod-

els are similar to UML activity diagrams. According to the exem-

plary usage model, the user calls the “startPage”, “catalogPage”, 

“categoryView”, and “productView” methods of the Web compo-

nent at the system boundary in succession. The “productView”-

method is optional to call, as it is called zero times with 20% 

probability. But the method may also be called up to eight times. 

 

Fig. 5: Example PCM allocation diagram 



Eight calls per user happen 20% of the time. Moreover, we also 

modeled the possible input values for the “productId” parameter 

of the “productView” method. It can assume the values 4, 7, and 9 

with 20%, 50%, and 30% probability respectively. Instead of the 

actual values of “productId”, we could also model its byte size or 

the number of elements in it. Lastly, Fig. 6 shows how often (in 

seconds) a user enters the system according to the “open work-

load” block at the top. 

The example usage model in Fig. 6 shows that usage models are 

able to specify the inputs of performance test cases. It allows us to 

model the sequence and frequency of method calls. Moreover, we 

can model the actual input values where necessary and can also 

use probability functions to state how to generate input values. 

However, usage models lack expected results and expected post-

conditions as well as the preconditions of the test case. So, these 

parts of the test case are not given in terms of Palladio models. 

In Table 3, we show a sample test case for the “Browse catalog” 

use case. The test case includes the Palladio usage model and 

allocation model shown in Fig. 6 and Fig. 5. We can also analyze 

the performance of this use case with Palladio. The test case 

supplies the usage model and the allocation model. In addition, we 

need a component repository, a system model (i. e. component 

composition), and a resource environment. These models form a 

complete Palladio model together and enable us to analyze the 

performance of the model according to the test case. 

5.2 Performance metric comparison and 

blame analysis 
Our approach helps analyzing performance errors. After perform-

ing a test, the tester needs to check first, if the test passed accord-

ing to the requirements. If the test failed our approach can be used 

for analysis. Our approach can be used to decide whether each of 

the components in the system is performing well. In this case, the 

poorly performing components are considered erroneous and their 

developers should fix them. If all components perform well, the 

problem lies elsewhere. So, we suspect a design or deployment 

issue. In the following, we will give an example for this analysis. 

Presuming that the test case for the “Browse catalog” use case is 

executed (cf. Table 3) and the tester finds that the test fails and 

that the requirements violated. Consequently, the blame analysis 

begins. I. e. we want to analyze who needs to fix the error the 

tester found. As Fig. 7 depicts, the components “Web”, “Catalog”, 

and “SQL database” participate in the use case. The use case 

covers three requests. The tester communicates that the test case 

failed during the “productView” requests. The tester can give us 

this information because the test case (cf. Table 3) is about check-

ing request response times. If the test case would have constrained 

a full execution of the use case, finding out which request is tak-

ing longer as it should, would have been part of the blame analy-

sis. However, this could be easily accomplished by looking at the 

requirements, as requests are called at the system boundary. 

Fig. 8 shows the additional response time measurements for the 

request “productView” and the inner methods it calls. The dia-

gram depicts a histogram of their response time. On the x-axis, the 

 

Fig. 6: PCM Usage model of the "Browse catalog" use case 

Table 3: example test case with Palladio models 

2 Details (once per test case) 

2.1 Test case identifier: 

1_Server_UC_Browse_001 

2.2 Objective 

Validate if the use case “Browse catalog” fulfills its 

response constraints in isolation using a realistic load 

for this use case. 

2.3 Inputs 

Cf. Fig. 6 

2.4 Outcome(s) 

90% of the requests shall be answered in less than 

200 ms (cf. Table 1) 

2.5 Environmental needs 

Cf. Fig. 5 

2.6 Special procedural requirements 

No preconditions 

Execute the test case for one hour. 

2.7 Intercase dependencies 

None 

 

 

Fig. 7: Detailed view of use case "Browse Catalog" 
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diagram shows response time measurements aggregated in clus-

ters. The response time of each method includes its own execution 

time and the time the method waited for results from internally 

called methods. On the y-axis, the diagram depicts the probability 

with which a measurement falls into the arctual cluster. The dia-

gram depicts that the “sql” method is executing fairly fast, while 

the other two methods take quite long to execute. 

Now, we compare the test results (cf. Fig. 8) to the performance 

prediction results depicted in Fig. 9. The performance prediction 

results stem from a performance simulation based on the Palladio 

models in the test case defined in Table 3. Thus, we can draw 

valid conclusions by comparing the performance metrics in Fig. 8 

and Fig. 9. 

Fig. 9 depicts the same performance metrics as Fig. 8. I. e., the 

x-axis shows clusters of method response time while the y-axis 

shows probability that a measurement is part of the respective 

cluster. In Fig. 9, the distribution of the measurement for each of 

the methods differ are very similar. The inner methods have a 

higher probability of lower response times, and the outer methods 

have a higher probability of higher response time. However, there 

is no such huge gap as in Fig. 8. 

In Fig. 8, the response time for the “sql” method is almost identic-

al as in Fig. 9. However, the methods “productView” and “getDe-

tailedProduct” show a much higher response time than in Fig. 9. 

So, we suspect that both of them are erroneous. Now we aim at 

narrowing the field of slow methods down to one. The response 

time for the method “productView” subsumes the response time 

for the method “getDetailedProduct”. This hints at problems in the 

method “getDetailedProduct” of the “Catalog” component. More-

over, the response time difference between the “getDetailedPro-

duct” curve and the “productView” curve is a bit bigger in Fig. 8, 

but still similar to the difference in Fig. 9. We can deduce that the 

most serious problem occurs in the method “getDetailedProduct” 

of the component “Catalog”. The vendor of this component shall 

fix this error. 

6. Conclusions and future work 
In this paper, we have presented an approach to do blame analy-

sis. It evaluates the performance of individual components. The 

approach achieves this by comparing component-individual per-

formance metrics that are acquired in performance testing to those 

that are acquired in performance prediction. Our approach pre-

dicts the performance of the system using a Palladio model. We 

use the metrics from performance prediction as expected values. If 

a component performs poorly, its component developer needs to 

fix the error. If no comsponent performs poorly, we can deduce a 

design or deployment issue. 

As our approach relies on comparing performance metrics from 

testing with those from performance prediction, we need these 

values to be comparable. Thus, we have analyzed test cases and 

Palladio models and shown that they partly include the same 

information. We have proposed to include certain Palladio models 

in test cases. In particular, the Palladio allocation and usage model 

shall be used to specify the input values and the test environment 

in the test cases. These two models built on an existing complete 

Palladio model, e. g. the one used to optimize the design models. 

We have shown an example for such a test case (cf. Table 3) 

based on the use case “Browse catalog” of our example web shop. 

Based on this test case we have shown that our approach can be 

used for blame analysis. We have presented performance metrics 

from performance prediction and performance test and have com-

pared them. By this means, we have found out that the gravest 

problem occurs in the “getDetailedProduct” method. Therefore, 

the component developer of the “Catalog” component would have 

to fix our example error. 

In the future, we plan to use the introduced approach on the 

Common Component Modeling Example (CoCoME) [7]. Co-

CoME offers a complete implementation including a test bed. 

Moreover, there is a Palladio model for CoCoME [11]. This will 

allow us to validate our approach using a fully implemented and 

more complex example. Particularly, we aim at creating blame 

analysis guidelines for several types of errors. This guideline shall 

include the analysis of utilization and concurrency metrics, as well 

as response time metrics. 

After that, we plan to evaluate our approach using a real-world 

open-source business information system that had known perfor-

mance problems. We will apply our approach to the faulty version 

of the software. This way we can analyze, if we can find out 

which components are responsible for the performance problems. 

We can confirm our findings by looking at the fix that the devel-

oper used to solve the problem. 
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Fig. 8: Combined test results – use case "Browse catalog" 
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